Qué es torsión?
Enviado por anthonisud • 2 de Junio de 2015 • Práctica o problema • 1.832 Palabras (8 Páginas) • 251 Visitas
Introducción
Muchos materiales cuando están en servicio están sujetos a fuerzas o cargas. En tales condiciones es necesario conocer las características del material para diseñar el instrumento donde va a usarse de tal forma que los esfuerzos a los que vaya a estar sometido no sean excesivos y el material no se fracture. El comportamiento mecánico de un material es el reflejo de la relación entre su respuesta o deformación ante una fuerza o carga aplicada. El ensayo de torsión se aplica en la industria para determinar constantes elásticas y propiedades de los materiales. También se puede aplicar este ensayo para medir la resistencia de soldaduras, uniones, adhesivos, etc.
La torsión en sí se refiere a un desplazamiento circular de una determinada sección transversal de un elemento cuando se aplica sobre éste un momento torsor o una fuerza que produce un momento torsor alrededor del eje. La torsión se puede medir observando la deformación que produce en un objeto un par determinado. Por ejemplo, se fija un objeto cilíndrico de longitud determinada por un extremo, y se aplica un par de fuerzas al otro extremo; la cantidad de vueltas que dé un extremo con respecto al otro es una medida de torsión.
Los materiales empleados en ingeniería para elaborar elementos de máquinas rotatorias, como los cigüeñales y árboles motores, deben resistir las tensiones de torsión que les aplican las cargas que mueven. La deformación plástica alcanzable con este tipo de ensayos es mucho mayor que en los de tracción (estricción) o en los de compresión.
1.- ¿Qué es torsión?
Es la solicitación que se presenta cuando se aplica un momento sobre el eje longitudinal de un elemento constructivo o prisma mecánico, como pueden ser ejes o, en general, elementos donde una dimensión predomina sobre las otras dos, aunque es posible encontrarla en situaciones diversas.
La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de estar contenida en el plano formado inicialmente por las dos curvas. En lugar de eso una curva paralela al eje se retuerce alrededor de él (ver torsión geométrica).
El estudio general de la torsión es complicado porque bajo ese tipo de solicitación la sección transversal de una pieza en general se caracteriza por dos fenómenos:
Aparecen tensiones tangenciales paralelas a la sección transversal. Si estas se representan por un campo vectorial sus líneas de flujo "circulan" alrededor de la sección.
Cuando las tensiones anteriores no están distribuidas adecuadamente, cosa que sucede siempre a menos que la sección tenga simetría circular, aparecen alabeos seccionales que hacen que las secciones transversales deformadas no sean planas.
1.1.-Torque
El torque o par es el nombre que se da a las fuerzas de torsión. Para que la torsión exista se requieren 2 fuerzas (par), que se ejercen en sentido opuesto.
Cuando se aplica una fuerza en algún punto de un cuerpo rígido, dicho cuerpo tiende a realizar un movimiento de rotación en torno a algún eje. Ahora bien, la propiedad de la fuerza aplicada para hacer girar al cuerpo se mide con una magnitud física que llamamos torque o momentode la fuerza.
Entonces, se llama torque o momento de una fuerza a la capacidad de dicha fuerza para producir un giro o rotación alrededor de un punto. En el caso específico de una fuerza que produce un giro o una rotación, muchos prefieren usar el nombre torque y no momento, porque este último lo emplean para referirse al momento lineal de una fuerza.
Para explicar gráficamente el concepto de torque, cuando se gira algo, tal como una puerta, se está aplicando una fuerza rotacional. Esa fuerza rotacional es la que se denomina torque o momento.
2.-Tipos de torsión
A.-Torsion de Saint-Venantpura
La teoría de la torsión de Saint-Venant es aplicable a piezas prismáticas de gran inercia torsional con cualquier forma de sección, en esta simplificación se asume que el llamado momento de alabeo es nulo, lo cual no significa que el alabeo seccional también lo sea. La teoría de torsión de Saint-Venant da buenas aproximaciones para valores , esto suele cumplirse en:
Secciones macizas de gran inercia torsional (circulares o de otra forma).
Secciones tubulares cerradas de pared delgada.
Secciones multicelulares de pared delgada.
Para secciones no circulares y sin simetría de revolución la teoría de Sant-Venant además de un giro relativo de la sección transversal respecto al eje baricéntrico predice un alabeo seccional o curvatura de la sección transversal. La teoría de Coulomb de hecho es un caso particular en el que el alabeo es cero, y por tanto sólo existe giro.
B.-Torsión recta: Teoría de Coulomb
Ejemplo de solicitación que produce un momento torsor constante y torsión recta sobre en una barra de sección cilíndric.
Distribución de tensiones sobre una sección circular maciza y una sección circular hueca para pequeñas deformaciones.
La teoría de Coulomb es aplicable a ejes de transmisión de potencia macizos o huecos, debido a la simetría circular de la sección no pueden existir alabeos diferenciales sobre la sección. De acuerdo con la teoría de Coulomb la torsión genera una tensión cortante el cual se calcula mediante la fórmula:
Donde:
: Esfuerzo cortante a la distancia .
: Momento torsor total que actúa sobre la sección.
: distancia desde el centro
...