TEORIA DEL BIG BANG
Enviado por donahurtado • 3 de Octubre de 2013 • 2.527 Palabras (11 Páginas) • 225 Visitas
Teoria del big bang
El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.
Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.
En 1948 el físico ruso nacionalizado estadounidense George Gamow modificó la teoría de Lemaître del núcleo primordial. Gamow planteó que el Universo se creó en una explosión gigantesca y que los diversos elementos que hoy se observan se produjeron durante los primeros minutos después de la Gran Explosión o Big Bang, cuando la temperatura extremadamente alta y la densidad del Universo fusionaron partículas subatómicas en los elementos químicos.
Cálculos más recientes indican que el hidrógeno y el helio habrían sido los productos primarios del Big Bang, y los elementos más pesados se produjeron más tarde, dentro de las estrellas. Sin embargo, la teoría de Gamow proporciona una base para la comprensión de los primeros estadios del Universo y su posterior evolución. A causa de su elevadísima densidad, la materia existente en los primeros momentos del Universo se expandió con rapidez. Al expandirse, el helio y el hidrógeno se enfriaron y se condensaron en estrellas y en galaxias. Esto explica la expansión del Universo y la base física de la ley de Hubble.
Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radioastrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.
Uno de los grandes problemas científicos sin resolver en el modelo del Universo en expansión es si el Universo es abierto o cerrado (esto es, si se expandirá indefinidamente o se volverá a contraer).
Un intento de resolver este problema es determinar si la densidad media de la materia en el Universo es mayor que el valor crítico en el modelo de Friedmann. La masa de una galaxia se puede medir observando el movimiento de sus estrellas; multiplicando la masa de cada galaxia por el número de galaxias se ve que la densidad es sólo del 5 al 10% del valor crítico. La masa de un cúmulo de galaxias se puede determinar de forma análoga, midiendo el movimiento de las galaxias que contiene. Al multiplicar esta masa por el número de cúmulos de galaxias se obtiene una densidad mucho mayor, que se aproxima al límite crítico que indicaría que el Universo está cerrado.
La diferencia entre estos dos métodos sugiere la presencia de materia invisible, la llamada materia oscura, dentro de cada cúmulo pero fuera de las galaxias visibles. Hasta que se comprenda el fenómeno de la masa oculta, este método de determinar el destino del Universo será poco convincente.
Muchos de los trabajos habituales en cosmología teórica se centran en desarrollar una mejor comprensión de los procesos que deben haber dado lugar al Big Bang. La teoría inflacionaria, formulada en la década de 1980, resuelve dificultades importantes en el planteamiento original de Gamow al incorporar avances recientes en la física de las partículas elementales. Estas teorías también han conducido a especulaciones tan osadas como la posibilidad de una infinidad de universos producidos de acuerdo con el modelo inflacionario.
Sin embargo, la mayoría de los cosmólogos se preocupa más de localizar el paradero de la materia oscura, mientras que una minoría, encabezada por el sueco Hannes Alfvén, premio Nobel de Física, mantienen la idea de que no sólo la gravedad sino también los fenómenos del plasma, tienen la clave para comprender la estructura y la evolución del Universo.
La teoría del estado estacionario
De acuerdo con la teoría de la Gran Explosión o del Big Bang, generalmente aceptada, el Universo surgió de una explosión inicial que ocasionó la expansión de la materia desde un estado de condensación extrema. Sin embargo, en la formulación original de la teoría del Big Bang quedaban varios problemas sin resolver. El estado de la materia en la época de la explosión era tal que no se podían aplicar las leyes físicas normales. El grado de uniformidad observado en el Universo también era difícil de explicar porque, de acuerdo con esta teoría, el Universo se habría expandido con demasiada rapidez para desarrollar esta uniformidad.
Según la teoría del Big Bang, la expansión del universo pierde velocidad, mientras que la teoría inflacionaria lo acelera e induce el distanciamiento, cada vez más rápido, de unos objetos de otros. Esta velocidad de separación llega a ser superior a la velocidad de la luz, sin violar la teoría de la relatividad, que prohíbe que cualquier cuerpo de masa finita se mueva más rápido que la luz. Lo que sucede es que el espacio alrededor de los objetos se expande más rápido que la luz, mientras los cuerpos permanecen en reposo en relación con él.
A esta extraordinaria velocidad de expansión inicial se le atribuye la uniformidad del universo visible, las partes que lo constituían estaban tan cerca unas de otras, que tenían una densidad y temperatura comunes.
Alan H Guth del Instituto Tecnológico de Massachussets (M.I.T.) sugirió en 1981 que el universo caliente, en un estadio intermedio, podría expandirse exponencialmente. La idea de Guth postulaba que este proceso de inflación se desarrollaba mientras el universo primordial se encontraba en el estado de superenfriamiento inestable. Este estado superenfriado es común en las transiciones de fase; por ejemplo en condiciones adecuadas el agua se mantiene líquida por debajo de cero grados. Por supuesto, el agua superenfriada termina congelándose; este suceso ocurre al final del período inflacionario.
En 1982 el cosmólogo ruso Andrei Linde introdujo lo que se llamó "nueva hipótesis del universo inflacionario". Linde se dió cuenta de que la inflación es algo que surge de forma
...