ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Trigonometría


Enviado por   •  8 de Septiembre de 2013  •  1.949 Palabras (8 Páginas)  •  238 Visitas

Página 1 de 8

INTRODUCCIÓN E HISTORIA

Es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de triángulos, de las propiedades y aplicaciones de las funciones trigonométricas de ángulos. Las dos ramas fundamentales de la trigonometría son la trigonometría plana, que se ocupa de figuras contenidas en un plano, y la trigonometría esférica, que se ocupa de triángulos que forman parte de la superficie de una esfera.

Las primeras aplicaciones de la trigonometría se hicieron en los campos de la navegación, la geodesia y la astronomía, en las que el principal problema era determinar una distancia inaccesible, como la distancia entre la Tierra y la Luna, o una distancia que no podía ser medida de forma directa. Otras aplicaciones de la trigonometría se pueden encontrar en la física, química y en casi todas las ramas de la ingeniería, sobre todo en el estudio de fenómenos periódicos, como el sonido o el flujo de corriente alterna.

La historia de la trigonometría se remonta a las primeras matemáticas conocidas, en Egipto y Babilonia. Los egipcios establecieron la medida de los ángulos en grados, minutos y segundos.

En el siglo II a.C. el astrónomo Hiparco de Nicea compiló una tabla trigonométrica para resolver triángulos. Comenzando con un ángulo de 70° y yendo hasta 180 °C con incrementos de 70°, la tabla daba la longitud de la cuerda delimitada por los lados del ángulo central dado que corta a una circunferencia de radio r.

300 años más tarde el astrónomo Tolomeo utilizó r = 60, pues los griegos adoptaron el sistema numérico sexagesimal (base 60) de los babilonios. Tolomeo incorporó en su gran libro de astronomía, el Almagesto, una tabla de cuerdas con incrementos °, desde 0° a 180°, con un error menor que 1/3.600 de unidad.1angulares de También explicó su método para compilar esta tabla de cuerdas, y a lo largo del libro dio bastantes ejemplos de cómo utilizar la tabla para calcular los elementos desconocidos de un triángulo a partir de los conocidos.

Hiparco de Nicea

Fundador de la trigonometría, autor del primer catálogo de estrellas, que incluía la posición de 1026 aparte de proponer una clasificación de dichos objetos en diversas clases de acuerdo con su brillo. Sus teorías sobre la Luna y el Sol fueron reasumidas, tal cual, por Tolomeo. Determinó la distancia y tamaño tanto del Sol como de la Luna. Comparando sus estudios sobre el cielo con los de los primeros astrónomos, Hiparco descubrió la precisión de los equinoccios .Sus cálculos del año tropical, duración del año determinada por las estaciones, tenían un margen de error de 6,5 minutos con respecto a las mediciones modernas. También inventó un método para localizar posiciones geográficas por medio de latitudes y longitudes.

Claudio Tolomeo

Fué un astrónomo y matemático que dominó el pensamiento científico hasta el siglo XVI por sus teorías y explicaciones astronómicas. Contribuyó a las matemáticas con sus estudios en trigonometría y aplicó sus teorías a la construcción de astrolabios y relojes de sol. El tratado de la esféricas de Meneláo, que se sitúa hacia el fin del primer siglo de nuestra era, proporciono a Tolomeo las proposiciones fundamentales de trigonometría esférica en particular el celebre teorema de menéalo. “Si un triángulo ABC, plano o esférico, es cortado por medio de una recta o de un circulo máximo en L, M, N se tiene: en el plano

• L = NA . MC

• A NC MB

La trigonometría desarrollada por árabes

A finales del siglo VIII los astrónomos árabes, que habían recibido la herencia de las tradiciones de Grecia y de la India, prefirieron trabajar con la función seno. En las últimas décadas del siglo X ya habían completado la función seno y las otras cinco funciones y habían descubierto y demostrado varios teoremas fundamentales de la trigonometría tanto para triángulos planos como esféricos. Varios matemáticos sugirieron el uso del valor r = 1 en vez de r = 60, lo que produjo los valores modernos de las funciones trigonométricas.

Los árabes calcularon tablas precisas en división sexagesimal; entre ellos destacó en particular Abu al-Wafa al – Buzadjami, por las divisiones en cuarto de grado, con cuatro posiciones sexagesimales. Por otra parte, este matemático, introdujo, con otro nombre, la tangente y la secante al lado del seno.

La trigonometría en Occidente

El occidente se familiarizó con la trigonometría árabe a través de traducciones de libros de astronomía arábigos, que comenzaron a aparecer en el siglo XII. El primer trabajo importante en esta materia en Europa fue, De triangulus escrito por el matemático y astrónomo alemán Johann Müller, llamado Regiomontano. Durante el siguiente siglo, el también astrónomo alemán Georges Joachim, conocido como Rético, introdujo el concepto moderno de funciones trigonométricas como proporciones en vez de longitudes de ciertas líneas.

La trigonometría en los tiempos modernos

En el s. XVII, Isaac Newton, inventó el cálculo diferencial e integral. Uno de los fundamentos del trabajo de Newton fue la representación de muchas funciones matemáticas utilizando series infinitas de potencias de la variable x. Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.

Por último, en el siglo XVIII, el matemático suizo Leonhard Euler fue el que fundó verdaderamente la trigonometría moderna y definió las funciones trigonométricas utilizando expresiones con exponenciales de números complejos. Esto convirtió a la trigonometría en sólo una de las muchas aplicaciones de los números complejos.

Isaac newton

El más grande de los matemáticos ingleses. Su libro "Principia Mathemáthica" basta para asegurarle un lugar sobresaliente en la Historia de las matemáticas. Descubrió simultáneamente con Leibnitz el Cálculo diferencial y el Cálculo integral. En Algebra le debemos el desarrollo del binomio que lleva su nombre. Según Leibnitz "Si se considera la matemática creada desde el principio del mundo hasta la época en que Newton vivió. Lo que él realizó fue la mejor mitad".

Leonhard Euler

fue un matemático suizo, cuyos trabajos más importantes se centraron en el campo de las matemáticas puras, campo de estudio que ayudó a fundar. Se le debe a este matemático el uso de las minúsculas latinas a, b, c para los lados de un triángulo plano o esférico y el de las mayúsculas

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com