¿Qué es estadística
Enviado por lolisienta • 7 de Marzo de 2012 • Ensayo • 2.993 Palabras (12 Páginas) • 496 Visitas
Estadística Para análisis, datos y gráficas sobre Wikipedia, véase Wikipedia:Estadísticas. La estadística es una ciencia que estudia la recolección, análisis e interpretación de datos, ya sea para ayudar en la toma de decisiones o para explicar condiciones regulares o irregulares de algún fenómeno o estudio aplicado, de ocurrencia en forma aleatoria o condicional. Sin embargo estadística es más que eso, en otras palabras es el vehículo que permite llevar a cabo el proceso relacionado con la investigación científica. Es transversal a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad. Se usa para la toma de decisiones en áreas de negocios o instituciones gubernamentales. La estadística se divide en dos grandes áreas: La estadística descriptiva, se dedica a la descripción, visualización y resumen de datos originados a partir de los fenómenos de estudio. Los datos pueden ser resumidos numérica o gráficamente. Ejemplos básicos de parámetros estadísticos son: la media y la desviación estándar. Algunos ejemplos gráficos son: histograma, pirámide poblacional, clústers, entre otros. La estadística inferencial, se dedica a la generación de los modelos, inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta la aleatoriedad de las observaciones. Se usa paramodelar patrones en los datos y extraer inferencias acerca de lapoblación bajo estudio. Estas inferencias pueden tomar la forma de respuestas a preguntas si/no (prueba de hipótesis), estimaciones de características numéricas (estimación), pronósticos de futuras observaciones, descripciones de asociación (correlación) o modelamiento de relaciones entre variables (análisis de regresión). Otras técnicas de modelamiento incluyen anova, series de tiempo y minería de datos Ambas ramas (descriptiva e inferencial) comprenden la estadística aplicada. Hay también una disciplina llamada estadística matemática, la que se refiere a las bases teóricas de la materia. La palabra «estadísticas» también se refiere al resultado de aplicar un algoritmo estadístico a un conjunto de datos, como en estadísticas económicas, estadísticas criminales, entre otros. El término alemán Statistik, que fue primeramente introducido por Gottfried Achenwall (1749), designaba originalmente el análisis de datosdel Estado, es decir, la "ciencia del Estado" (también llamada aritmética política de su traducción directa del inglés). No fue hasta el siglo XIX cuando el término estadística adquirió el significado de recolectar y clasificar datos. Este concepto fue introducido por el militar británicoSir John Sinclair (1754-1835). En su origen, por tanto, la Estadística estuvo asociada a los Estados, para ser utilizados por el gobierno y cuerpos administrativos (a menudo centralizados). La colección de datos acerca de estados y localidades continúa ampliamente a través de los servicios de estadística nacionales e internacionales. En particular, los censos suministran información regular acerca de la población. Ya se utilizaban representaciones gráficas y otras medidas en pieles, rocas, palos de madera y paredes de cuevas para controlar el número de personas, animales o ciertas mercancías. Hacia el año 3000 a. C. los babilonios usaban ya pequeños envases moldeados de arcilla para recopilar datos sobre la producción agrícola y de los géneros vendidos o cambiados. Los egipcios analizaban los datos de la población y la renta del país mucho antes de construir las pirámides en el siglo XI a. C. Los libros bíblicos de Números y Crónicas incluyen en algunas partes trabajos de estadística. El primero contiene dos censos de la población de Israel y el segundo describe el bienestar material de las diversas tribus judías. En China existían registros numéricos similares con anterioridad al año 2000 a. C. Los antiguos griegos realizaban censos cuya información se utilizaba hacia el 594 a. C. para cobrar impuestos. urante el siglo XX, la creación de instrumentos precisos para asuntos de salud pública (epidemiología, bioestadística, etc.) y propósitos económicos y sociales (tasa de desempleo, econometría, etc.) necesitó de avances sustanciales en las prácticas estadísticas. Hoy el uso de la estadística se ha extendido más allá de sus orígenes como un servicio al Estado o al gobierno. Personas y organizaciones usan la estadística para entender datos y tomar decisiones en ciencias naturales y sociales, medicina, negocios y otras áreas. La estadística es entendida generalmente no como un sub-área de las matemáticas sino como una ciencia diferente «aliada». Muchasuniversidades tienen departamentos académicos de matemáticas y estadística separadamente. La estadística se enseña en departamentos tan diversos como psicología, educación y salud pública. Regresión lineal - Gráficos de dispersión en estadística. Al aplicar la estadística a un problema científico, industrial o social, se comienza con un proceso o población a ser estudiado. Esta puede ser la población de un país, de granos cristalizados en una roca o de bienes manufacturados por una fábrica en particular durante un periodo dado. También podría ser un proceso observado en varios ascos instantes y los datos recogidos de esta manera constituyen una serie de tiempo. Por razones prácticas, en lugar de compilar datos de una población entera, usualmente se estudia un subconjunto seleccionado de la población, llamado muestra. Datos acerca de la muestra son recogidos de manera observacional o experimental. Los datos son entonces analizados estadísticamente lo cual sigue dos propósitos: descripción e inferencia. El concepto de correlación es particularmente valioso. Análisis estadísticos de un conjunto de datos puede revelar que dos variables (esto es, dos propiedades de la población bajo consideración) tienden a variar conjuntamente, como si hubiera una conexión entre ellas. Por ejemplo, un estudio del ingreso anual y la edad de muerte podría resultar en que personas pobres tienden a tener vidas más cortas que personas de mayor ingreso. Las dos variables se dicen que están correlacionadas. Sin embargo, no se puede inferir inmediatamente la existencia de una relación de causalidad entre las dos variables. El fenómeno correlacionado podría ser la causa de una tercera, previamente no considerada, llamada variable confusora. Si la muestra es representativa de la población, inferencias y conclusiones hechas en la muestra pueden ser extendidas a la población completa. Un problema mayor es el de determinar que tan representativa es la muestra extraída. La estadística ofrece medidas para estimar y corregir por aleatoriedad en la muestra y en el proceso de recolección de los datos, así como métodos para diseñar experimentos robustos como primera medida, ver
...