ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

APLICACIÓN DE LA TEORÍA DE CONJUNTOS


Enviado por   •  24 de Noviembre de 2021  •  Trabajo  •  847 Palabras (4 Páginas)  •  681 Visitas

Página 1 de 4

TAREA 3 APLICACIÓN DE LA TEORÍA DE CONJUNTOS

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD

POGRAMA: INGENERIA DE SISTEMA

CEAD BARRANQUILLA

INTRODUCCIÓN

Esta unidad se trata sobre aplicación de la teoría de conjuntos, donde se encuentran 4 ejercicios resueltos de Determinación y clases de conjuntos, Representación de conjuntos y Operaciones entre conjuntos aplicando los conocimientos previamente adquiridos en los materiales de estudio.

OBJETIVO

El objetivo de esta actividad desarrollar la aplicación de la teoría de conjuntos para dar solución a los problemas de la vida real y adquirir conocimiento en los siguientes ejercicios.

Determinación y clases de conjuntos

• Determinar por Extensión el conjunto seleccionado.

• Hallar el cardinal del conjunto.

• Identificar qué clase de conjunto es (finito, infinito, unitario).

Representación de conjuntos

• Sombrear los diagramas de Venn-Euler de cada uno de los lados de la igualdad, según la operación de conjuntos planteada en el argumento.

• Determinar y argumentar si se cumple o no la igualdad entre las operaciones, de acuerdo con las regiones sombreadas en los diagramas de Venn-Euler.

Operaciones entre conjuntos

• Definir los nombres de los conjuntos del diagrama de Venn-Euler y dar la respuesta en las operaciones entre conjunto.

Ejercicio 1: Determinación y clases de conjuntos

𝐴= {𝑥⁄𝑥 ∈ 𝑍, 𝑥 𝑒𝑠 𝑛U𝑚𝑒𝑟𝑜 𝑝𝑎𝑟 ∧ 0<𝑥<10}

Determinar por Extensión el conjunto seleccionado

𝐴= {2,4,6,8 }

Hallar el cardinal del conjunto

𝑁(𝐴)=4

Identificar qué clase de conjunto es (finito, infinito, unitario)

El conjunto A es finito.

Ejercicio 2: Representación de conjuntos

𝐴−(𝐵∩𝐶) =(𝐴−𝐵) 𝑈(𝐴−𝐶)

Defina los nombres de los conjuntos del diagrama de ven.

U= Estudiantes de la unad

A= Estudiantes Matriculados en ingeniería de sistema

B= Estudiantes Matriculados en Catedra

C= Estudiantes Matriculados en herramienta digitales

Sombrear los diagramas de Venn-Euler de cada uno de los lados de la igualdad, según la operación de conjuntos planteada en el argumento.

𝐴−(𝐵∩𝐶)

(𝐴−𝐵) 𝑈(𝐴−𝐶)

𝐴−𝐵

𝐴−𝐶

(𝑨−𝑩) ∪ (𝑨−𝑪)

Determine y argumente si se cumple o no la igualdad entre las operaciones, de acuerdo con las regiones sombreadas en los diagramas de Venn-Euler.

Una vez representado en el diagrama cada uno de los lados de la igualdad se puede evidenciar que las gráficas son iguales, por lo tanto, Si se cumple la igualdad.

Ejercicio 3: Operaciones entre conjuntos

Operaciones entre conjuntos

1. (𝐴∪𝐵)−𝐶

2. (𝐴Δ𝐶)∪𝐵

3. (𝐵−𝐶)𝐶

4. 𝐶∩(𝐴−𝐵)

Defina los nombres de los conjuntos del diagrama de Venn-Euler (En este paso el estudiante debe dar un nombre a cada uno de los conjuntos).

U= Estudiantes de la Unad

A= Estudiantes Matriculados en ingeniería de sistema

B= Estudiantes Matriculados en Catedra

C= Estudiantes Matriculados en herramienta digitales

Con los datos dados en el diagrama de Venn-Euler escogido, dar respuestas a cada una de las siguientes operaciones entre conjuntos

Operación: (𝐴∪𝐵)−𝐶

Respuesta: 4+5+1:10

Operación: (𝐴Δ𝐶)∪𝐵

Respuesta:4+5+1+3+2+7:22

...

Descargar como (para miembros actualizados) txt (7 Kb) pdf (65 Kb) docx (13 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com