Algebra.
Enviado por recon7891 • 24 de Agosto de 2014 • Síntesis • 2.275 Palabras (10 Páginas) • 349 Visitas
Para otros usos de este término, véase Álgebra sobre un cuerpo.
El álgebra (del árabe: الجبر al-ŷabr 'reintegración, recomposición'1 ) es la rama de la matemática que estudia la combinación de elementos de estructuras abstractas acorde a ciertas reglas. Originalmente esos elementos podían ser interpretados como números o cantidades, por lo que el álgebra en cierto modo originalmente fue una generalización y extensión de la aritmética.2 3 En el álgebra moderna existen áreas del álgebra que en modo alguno pueden considerarse extensiones de la aritmética (álgebra abstracta, álgebra homológica, álgebra exterior, etc.).Introducción
A diferencia de la aritmética elemental, que trata de los números y las operaciones fundamentales, en álgebra -para lograr la generalización- se introducen además símbolos (usualmente letras) para representar parámetros (variables o coeficientes), o cantidades desconocidas (incógnitas); las expresiones así formadas son llamadas «fórmulas algebraicas», y expresan una regla o un principio general.4 El álgebra conforma una de las grandes áreas de las matemáticas, junto a la teoría de números, la geometría y el análisis.
Página del libro Kitāb al-mukhtaṣar fī ḥisāb al-ŷabr wa-l-muqābala, de Al-Juarismi.
La palabra «álgebra» proviene del vocablo árabe الجبر al-ŷabar (en árabe dialectal por asimilación progresiva se pronunciaba [alŷɛbɾ] de donde derivan los términos de las lenguas europeas), que se traduce como 'restauración' o 'reponimiento, reintegración'. Deriva del tratado escrito alrededor del año 820 d.C. por el matemático y astrónomo persa Muhammad ibn Musa al-Jwarizmi (conocido como Al Juarismi), titulado Al-kitāb al-mukhtaṣar fī ḥisāb al-ŷarabi waˀl-muqābala (Compendio de cálculo por reintegración y comparación), el cual proporcionaba operaciones simbólicas para la solución sistemática de ecuaciones lineales y cuadráticas. Muchos de sus métodos derivan del desarrollo de la matemática en el islam medieval, destacando la independencia del álgebra como una disciplina matemática independiente de la geometría y de la aritmética.5 Puede considerarse al álgebra como el arte de hacer cálculos del mismo modo que en aritmética, pero con objetos matemáticos no-numéricos.6
El adjetivo «algebraico» denota usualmente una relación con el álgebra, como por ejemplo en estructura algebraica. Por razones históricas, también puede indicar una relación con las soluciones de ecuaciones polinomiales, números algebraicos, extensión algebraica o expresión algebraica. Conviene distinguir entre:
Álgebra elemental es la parte del álgebra que se enseña generalmente en los cursos de matemáticas.
Álgebra abstracta es el nombre dado al estudio de las «estructuras algebraicas» propiamente.
El álgebra usualmente se basa en estudiar las combinaciones de cadenas finitas de signos y , mientras que análisis matemático requiere estudiar límites y sucesiones de una cantidad infinita de elementos.
Historia del álgebra
Véase también: Historia de la matemática
El álgebra en la antigüedad
Las raíces del álgebra pueden rastrearse hasta la antigua matemática babilónica,7 que había desarrollado un avanzado sistema aritmético con el que fueron capaces de hacer cálculos en una forma algorítmica. Con el uso de este sistema lograron encontrar fórmulas y soluciones para resolver problemas que hoy en día suelen resolverse mediante ecuaciones lineales, ecuaciones de segundo grado y ecuaciones indeterminadas. En contraste, la mayoría de los egipcios de esta época, y la mayoría de los matemáticos griegos y chinos del primer milenio antes de Cristo, normalmente resolvían tales ecuaciones por métodos geométricos, tales como los descritos en el Papiro de Rhind, Los Elementos de Euclides y Los nueve capítulos sobre el arte matemático.
Papiro de Ahmes; datado entre 2000 al 1800 a. C.
Las nueve lecciones del arte matemático; compilado durante siglos II y I a. C.
Elementos de Euclides, ca. 300 a. C.
Arithmetica; escrito por Diofanto alrededor de 280.
Véase también: Matemática helénica
Los matemáticos de la Antigua Grecia introdujeron una importante transformación al crear un álgebra de tipo geométrico, en donde los «términos» eran representados mediante los «lados de objetos geométricos», usualmente líneas a las cuales asociaban letras.6 Los matemáticos helénicos Herón de Alejandría y Diofanto8 así como también los matemáticos indios como Brahmagupta, siguieron las tradiciones de Egipto y Babilonia, si bien la Arithmetica de Diofanto y el Brahmasphutasiddhanta de Brahmagupta se hallan a un nivel de desarrollo mucho más alto.9 Por ejemplo, la primera solución aritmética completa (incluyendo al cero y soluciones negativas) para las ecuaciones cuadráticas fue descrita por Brahmagupta en su libro Brahmasphutasiddhanta. Más tarde, los matemáticos árabes y musulmanes desarrollarían métodos algebraicos a un grado mucho mayor de sofisticación.
Diofanto (siglo III d.C.), algunas veces llamado «el pádre del álgebra», fue un matemático alejandrino, autor de una serie de libros intitulados Arithmetica. Estos textos tratan de las soluciones a las ecuaciones algebraicas.10
Influencia árabe
Véase también: Matemática en el islam medieval
Los babilonios y Diofanto utilizaron sobre todo métodos especiales "ad hoc" para resolver ecuaciones, la contribución de Al-Khwarizmi fue fundamental; resuelve ecuaciones lineales y cuadráticas sin el simbolismo algebraico, números negativos o el cero, por lo que debe distinguir varios tipos de >jab.11
El matemático persa Omar Khayyam desarrolló la geometría algebraica y encontró la solución geométrica de la ecuación cúbica. Otro matemático persa, Sharaf Al-Din al-Tusi, encontró la solución numérica y algebraica a diversos casos de ecuaciones cúbicas; también desarrolló el concepto de función. Los matemáticos indios Mahavirá y Bhaskara II, el matemático persa Al-Karaji, y el matemático chino Zhu Shijie, resolvieron varios casos de ecuaciones de grado tres, cuatro y cinco, así como ecuaciones polinómicas de orden superior mediante métodos numéricos.
Edad Moderna
Durante la Edad Moderna europea tienen lugar numerosas innovaciones, y se alcanzan resultados que claramente superan los resultados obtenidos por los matemáticos árabes, persas, indios o griegos. Parte de este estímulo viene del estudio de las ecuaciones polinómicas de tercer y cuarto
...