ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Algoritmos De Recorrido Y búsqueda


Enviado por   •  23 de Agosto de 2013  •  1.145 Palabras (5 Páginas)  •  1.558 Visitas

Página 1 de 5

Recorrido de grafos:

Recorrer un grafo significa tratar de alcanzar todos los nodos que estén relacionados con uno que llamaremos nodos de salida.existen básicamente dos técnicas para recorrer un grafo: el recorrido en anchura y el recorrido en profundidad.

Así, para recorrer un grafo consiste en visitar todos los vértices alcanzables a partir de uno dado.hay dos formas.

• Recorrido en profundidad (DFS)

• Recorrido en anchura (BFS)

Algoritmo BFS

El algoritmo de recorrido en anchura o BFS, explora sistemáticamente todas las ramas o aristas del grafo de manera que primero se visitan los nodos o vértices más cercanos a un nodo inicial.

Algoritmo DFS

El algoritmo de recorrido en profundidad o DFS, explora sistemáticamente las ramas o aristas del grafo de manera que primero se visitan los nodos o vértices adyacentes a los visitados más recientemente. De esta forma se va "profundizando" en el grafo, es decir, alejándose progresivamente del nodo inicial [2]. Esta estrategia admite una implementación simple en forma recursiva, utilizando globalmente un contador y un vector de enteros para marcar los vértices ya visitados y almacenar el orden del recorrido.

BÚSQUEDA EN PROFUNDIDAD (BEP)

Se comienza en el vértice inicial (vértice con índice 1) que se marca como vértice activo. Hasta que todos los vértices hayan sido visitados, en cada paso se avanza al vecino con el menor índice siempre que se pueda, pasando este a ser el vértice activo. Cuando todos los vecinos al vértice activo hayan sido visitados, se retrocede al vérticeX desde el que se alcanzó el vértice activo y se prosigue siendo ahora X el vértice activo.

ALGORITMO BEP:

Sea G = (V, A) un grafo conexo, V' = V un conjunto de vértice, A'un vector de arcos inicialmente vacío y P un vector auxiliar inicialmente vacío:

Se introduce el vértice inicial en P y se elimina del conjunto V'.

Mientras V' no sea vacío repetir los puntos 3 y 4. En otro caso parar.

Se toma el último elemento de P como vértice activo.

Si el vértice activo tiene algún vértice adyacente que se encuentre en V':

Se toma el de menor índice.

Se inserta en P como último elemento.

Se elimina de V'.

Se inserta en A' el arco que le une con el vértice activo.

Si el vértice activo no tiene adyacentes se elimina de P.

BÚSQUEDA ANCHURA (BEA)

Se comienza en el vértice inicial (vértice con índice 1) y se marca como vértice activo, a diferencia con la BEP ahora se visitan en orden creciente de índice todos los vecinos del vértice activo antes de pasar al siguiente. Hasta que todos los vértices hayan sido visitados, en cada paso se van visitando en orden creciente de índice todos los vecinos del vértice activo. Cuando se han visitado todos los vecinos del vértice activo, se toma como nuevo vértice activo el primer vértice X visitado después del actual vértice activo en el desarrollo del algoritmo.

ALGORITMO BEA:

Sea G = (V, A) un grafo conexo, V' = V un conjunto de vértices, A' un vector de arcos inicialmente vacío y P un vector auxiliar inicialmente vacío:

Se introduce el vértice inicial en P y se elimina del conjunto.

Mientras V' no sea vacío repetir los puntos 3 y 4. En otro caso parar.

Se toma el primer elemento de P como vértice activo.

Si el vértice activo tiene algún vértice adyacente que se encuentre en V':

Se toma el de menor índice.

Se inserta en P como último elemento.

Se elimina de V'.

Se inserta en A' el arco que le une con el vértice activo.

Si el vértice activo no tiene adyacentes

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com