ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Algunos De Los Avances más Importantes De Las Matemáticas Del Siglo XX


Enviado por   •  23 de Enero de 2013  •  433 Palabras (2 Páginas)  •  607 Visitas

Página 1 de 2

Algunos de los avances más importantes de las matemáticas del siglo XX

La geometría paso de las ideas de geometría analítica del siglo XVII ala proyectiva del siglo XIX, hasta llegar a la geometría diferencial del siglo XX.

La geometría integral combinatoria puede ser considerada como una generalización del problema primitivo de las agujas de Bufón, extendiéndolo al caso de varias agujas fijas en el plano, en posición arbitraria, y calculando las medidas de las rectas que cortan o separan a algunas de estas agujas.

La geometría sufrió un cambio radical de dirección en el siglo XIX. Los matemáticos Carl Friedrich Gauss, Nikolái Lobachevski, y János Bolyai, trabajando por separado, desarrollaron sistemas coherentes de geometría no euclídea. Estos sistemas aparecieron a partir de los trabajos sobre el llamado "postulado paralelo" de Euclides, al proponer alternativas que generan modelos extraños y no intuitivos de espacio, aunque, eso sí, coherentes.

Casi al mismo tiempo, el matemático británico Arthur Cayley desarrolló la geometría para espacios con más de tres dimensiones. Imaginemos que una línea es un espacio unidimensional. Si cada uno de los puntos de la línea se sustituye por una línea perpendicular a ella, se crea un plano, o espacio bidimensional. De la misma manera, si cada punto del plano se sustituye por una línea perpendicular a él, se genera un espacio tridimensional. Yendo más lejos, si cada punto del espacio tridimensional se sustituye por una línea perpendicular, tendremos un espacio tetra dimensional. Aunque éste es físicamente imposible, e inimaginable, es conceptualmente sólido. El uso de conceptos con más de tres dimensiones tiene un importante número de aplicaciones en las ciencias físicas, en particular en el desarrollo de teorías de la relatividad.

También se han utilizado métodos analíticos para estudiar las figuras geométricas regulares en cuatro o más dimensiones y compararlas con figuras similares en tres o menos dimensiones. Esta geometría se conoce como geometría estructural. Un ejemplo de este enfoque de la geometría es la definición de la figura geométrica más sencilla que se puede dibujar en espacios con cero, una, dos, tres, cuatro o más dimensiones. En los cuatro primeros casos, las figuras son los bien conocidos punto, línea, triángulo y tetraedro respectivamente. En el espacio de cuatro dimensiones, se puede demostrar que la figura más sencilla está compuesta por cinco puntos como vértices, diez segmentos como aristas, diez triángulos como caras y cinco tetraedros. El tetraedro, analizado de la misma manera, está compuesto por cuatro vértices, seis segmentos y cuatro triángulos.

Otro concepto dimensional, el de dimensiones fraccionarias, apareció en el siglo XIX. En la década de 1970 el concepto se desarrolló como la geometría fractal.

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com