Análisis Estadístico Multivariado Distribución Normal Estándar
Enviado por Carlos Quintero • 20 de Febrero de 2020 • Apuntes • 367 Palabras (2 Páginas) • 112 Visitas
[pic 1]
Universidad Autónoma Chapingo
[pic 2]
Centro de Investigaciones Económicas,
Sociales y Tecnológicas de la Agroindustria
y la Agricultura Mundial.
Métodos Cuantitativos I
Análisis Estadístico Multivariado
Distribución Normal Estándar
Presenta:
Quintero Nieto Carlos Alfonso
Profesor:
Dr. Jorge Aguilar-Ávila
[pic 3]
Chapingo, Estado de México, febrero 2020
ANÁLISIS DE LA PROBABILIDAD CON INAi
En la hoja de Excel proporcionada, calcule las puntuaciones Z para INAi[pic 4]
Datos:[pic 5][pic 6]
Media = [pic 8][pic 9][pic 10][pic 7]
Desviación estándar = [pic 11]
[pic 12][pic 13][pic 14][pic 15][pic 16][pic 17][pic 18]
[pic 19][pic 20][pic 21][pic 22][pic 23]
[pic 24][pic 25][pic 26][pic 27]
[pic 28]
[pic 29]
Para la distribución normal estándar tenemos que:
No. | ID | INAi | Puntos Z |
1 | 18 | 0.000 | -2.594 |
2 | 61 | 0.000 | -2.594 |
3 | 69 | 0.000 | -2.594 |
4 | 98 | 0.013 | -2.521 |
5 | 100 | 0.121 | -1.886 |
6 | 95 | 0.135 | -1.808 |
7 | 89 | 0.178 | -1.555 |
8 | 108 | 0.179 | -1.545 |
9 | 39 | 0.180 | -1.541 |
10 | 78 | 0.199 | -1.428 |
11 | 21 | 0.211 | -1.361 |
12 | 97 | 0.227 | -1.268 |
13 | 2 | 0.235 | -1.221 |
14 | 55 | 0.236 | -1.216 |
15 | 105 | 0.241 | -1.183 |
16 | 86 | 0.245 | -1.160 |
17 | 40 | 0.250 | -1.131 |
18 | 30 | 0.252 | -1.120 |
19 | 93 | 0.255 | -1.101 |
20 | 49 | 0.272 | -1.004 |
21 | 60 | 0.292 | -0.885 |
22 | 106 | 0.307 | -0.798 |
23 | 79 | 0.309 | -0.788 |
24 | 107 | 0.322 | -0.710 |
25 | 10 | 0.324 | -0.698 |
26 | 111 | 0.326 | -0.691 |
27 | 23 | 0.327 | -0.682 |
28 | 4 | 0.331 | -0.661 |
29 | 110 | 0.331 | -0.659 |
30 | 88 | 0.334 | -0.640 |
31 | 29 | 0.336 | -0.630 |
32 | 53 | 0.339 | -0.611 |
33 | 43 | 0.341 | -0.600 |
34 | 62 | 0.356 | -0.515 |
35 | 72 | 0.361 | -0.485 |
36 | 31 | 0.374 | -0.410 |
37 | 58 | 0.381 | -0.367 |
38 | 11 | 0.392 | -0.301 |
39 | 56 | 0.393 | -0.299 |
40 | 42 | 0.394 | -0.290 |
41 | 13 | 0.406 | -0.223 |
42 | 16 | 0.410 | -0.198 |
43 | 74 | 0.411 | -0.189 |
44 | 50 | 0.417 | -0.155 |
45 | 112 | 0.420 | -0.141 |
46 | 66 | 0.429 | -0.089 |
47 | 65 | 0.438 | -0.033 |
48 | 20 | 0.448 | 0.023 |
49 | 57 | 0.448 | 0.023 |
50 | 73 | 0.452 | 0.047 |
51 | 41 | 0.454 | 0.058 |
52 | 80 | 0.456 | 0.072 |
53 | 51 | 0.458 | 0.084 |
54 | 48 | 0.461 | 0.101 |
55 | 38 | 0.465 | 0.127 |
56 | 77 | 0.468 | 0.143 |
57 | 33 | 0.474 | 0.174 |
58 | 52 | 0.474 | 0.174 |
59 | 37 | 0.479 | 0.206 |
60 | 1 | 0.481 | 0.218 |
61 | 28 | 0.486 | 0.249 |
62 | 27 | 0.488 | 0.261 |
63 | 59 | 0.488 | 0.261 |
64 | 64 | 0.489 | 0.266 |
65 | 19 | 0.490 | 0.273 |
66 | 94 | 0.497 | 0.310 |
67 | 25 | 0.506 | 0.364 |
68 | 67 | 0.508 | 0.374 |
69 | 91 | 0.508 | 0.378 |
70 | 85 | 0.510 | 0.390 |
71 | 68 | 0.515 | 0.418 |
72 | 90 | 0.519 | 0.439 |
73 | 36 | 0.519 | 0.442 |
74 | 45 | 0.522 | 0.456 |
75 | 6 | 0.527 | 0.487 |
76 | 54 | 0.527 | 0.487 |
77 | 5 | 0.531 | 0.512 |
78 | 76 | 0.540 | 0.566 |
79 | 44 | 0.551 | 0.625 |
80 | 34 | 0.553 | 0.639 |
81 | 63 | 0.556 | 0.658 |
82 | 71 | 0.557 | 0.663 |
83 | 84 | 0.559 | 0.675 |
84 | 14 | 0.561 | 0.688 |
85 | 82 | 0.562 | 0.693 |
86 | 24 | 0.565 | 0.712 |
87 | 70 | 0.565 | 0.712 |
88 | 87 | 0.572 | 0.748 |
89 | 9 | 0.574 | 0.761 |
90 | 22 | 0.574 | 0.761 |
91 | 7 | 0.579 | 0.790 |
92 | 8 | 0.591 | 0.862 |
93 | 47 | 0.595 | 0.886 |
94 | 46 | 0.605 | 0.943 |
95 | 92 | 0.609 | 0.968 |
96 | 109 | 0.609 | 0.968 |
97 | 35 | 0.610 | 0.975 |
98 | 104 | 0.617 | 1.011 |
99 | 83 | 0.630 | 1.089 |
100 | 101 | 0.642 | 1.157 |
101 | 3 | 0.645 | 1.175 |
102 | 75 | 0.665 | 1.291 |
103 | 12 | 0.678 | 1.368 |
104 | 15 | 0.678 | 1.368 |
105 | 103 | 0.679 | 1.377 |
106 | 17 | 0.680 | 1.382 |
107 | 99 | 0.686 | 1.418 |
108 | 96 | 0.706 | 1.535 |
109 | 102 | 0.721 | 1.620 |
110 | 32 | 0.730 | 1.674 |
111 | 81 | 0.740 | 1.730 |
112 | 26 | 0.833 | 2.278 |
...