ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Bernoulli


Enviado por   •  1 de Abril de 2013  •  Examen  •  2.546 Palabras (11 Páginas)  •  350 Visitas

Página 1 de 11

Distribución de Bernoulli

Saltar a: navegación, búsqueda

Bernoulli

Parámetros

Dominio

Función de probabilidad (fp)

Función de distribución (cdf)

Media

Mediana

N/A

Moda

Varianza

Coeficiente de simetría

Curtosis

Entropía

Función generadora de momentos (mgf)

Función característica

En teoría de probabilidad y estadística, la distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito ( ) y valor 0 para la probabilidad de fracaso ( ).

Si es una variable aleatoria que mide "número de éxitos", y se realiza un único experimento con dos posibles resultados (éxito o fracaso), se dice que la variable aleatoria se distribuye como una Bernoulli de parámetro .

La fórmula será:

Su función de probabilidad viene definida por:

Un experimento al cual se aplica la distribución de Bernoulli se conoce como Ensayo de Bernoulli o simplemente ensayo, y la serie de esos experimentos como ensayos repetidos.

Contenido

• 1 Propiedades características

• 2 Distribuciones Relacionadas

• 3 Ejemplo

• 4 Véase también

Propiedades características

Esperanza matemática:

Varianza:

Función generatriz de momentos:

Función característica:

Moda:

0 si q > p (hay más fracasos que éxitos)

1 si q < p (hay más éxitos que fracasos)

0 y 1 si q = p (los dos valores, pues hay igual número de fracasos que de éxitos)

Asimetría (Sesgo):

Curtosis:

La Curtosis tiende a infinito para valores de cercanos a 0 ó a 1, pero para la distribución de Bernoulli tiene un valor de curtosis menor que el de cualquier otra distribución, igual a -2.

Distribuciones Relacionadas

• Si son variables aleatorias identicamente distribuidas con la distribución de Bernoulli con la misma probabilidad de éxito en todas, entonces la variable aleatoria presenta una Distribución Binomial de probabilidad.

Ejemplo

"Lanzar una moneda, probabilidad de conseguir que salga cruz".

Se trata de un solo experimento, con dos resultados posibles: el éxito (p) se considerará sacar cruz. Valdrá 0,5. El fracaso (q) que saliera cara, que vale (1 - p) = 1 - 0,5 = 0,5.

La variable aleatoria X medirá "número de cruces que salen en un lanzamiento", y sólo existirán dos resultados posibles: 0 (ninguna cruz, es decir, salir cara) y 1 (una cruz).

Por tanto, la v.a. X se distribuirá como una Bernoulli, ya que cumple todos los requisitos.

________________________________________

Ejemplo:

"Lanzar un dado y salir un 6".

Cuando lanzamos un dado tenemos 6 posibles resultados:

Estamos realizando un único experimento (lanzar el dado una sola vez).

Se considera éxito sacar un 6, por tanto, la probabilidad según el teorema de Laplace (casos favorables dividido entre casos posibles) será 1/6.

Se considera fracaso no sacar un 6, por tanto, se considera fracaso sacar cualquier otro resultado.

La variable aleatoria X medirá "número de veces que sale un 6", y solo existen dos valores posibles, 0 (que no salga 6) y 1 (que salga un 6).

Por tanto, la variable aleatoria X se distribuye como una Bernoulli de parámetro = 1/6

La probabilidad de que obtengamos un 6 viene definida como la probabilidad de que X sea igual a 1.

La probabilidad de que NO obtengamos un 6 viene definida como la probabilidad de que X sea igual a 0.

En teoría de probabilidad y estadística, la distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito (p) y valor 0 para la probabilidad de fracaso (q = 1 − p).

Si X es una variable aleatoria que mide "número de éxitos", y se realiza un único experimento con dos posibles resultados (éxito o fracaso), se dice que la variable aleatoria X se distribuye como una Bernouilli de parámetro p.

X˜Be(p)

La fórmula será:

f(x) = px(1 − p)1 − x con x = {0,1}

Su función de probabilidad viene definida por:

Un experimento al cual se aplica la distribución de Bernoulli se conoce como Ensayo de Bernoulli o simplemente ensayo, y la serie de esos experimentos como ensayos repetidos.

Consiste en realizar un experimento aleatorio una sóla vez y observar si cierto suceso ocurre o no, siendo p la probabilidad de que esto sea así (éxito) y q=1-p el que no lo sea (fracaso). En realidad no se trata más que de una variable dicotómica, es decir que únicamente puede tomar dos modalidades, es por ello que el hecho de llamar éxito o fracaso a los posibles resultados de las pruebas obedece más una tradición literaria o histórica, en el estudio de las v.a., que a la situación real que pueda derivarse del resultado. Podríamos por tanto definir este experimento mediante una v.a. discreta Xque toma los valores X=0 si el suceso no ocurre, y X=1 en caso contrario, y que se denota.

DISTRIBUCIÓN DE POISSON.

Características:

En este tipo de experimentos los éxitos buscados son expresados por unidad de área, tiempo, pieza, etc, etc,:

- # de defectos de una tela por m2

- # de aviones que aterrizan en un aeropuerto por día, hora, minuto, etc, etc.

- # de bacterias por cm2 de cultivo

- # de llamadas telefónicas a un conmutador por hora, minuto, etc, etc.

- # de llegadas de embarcaciones a un puerto por día, mes, etc, etc.

Para determinar la probabilidad de que ocurran x éxitos por unidad de tiempo, área, o producto, la fórmula a utilizar sería:

donde:

p(x, l) = probabilidad de que ocurran x éxitos, cuando el número promedio de ocurrencia de ellos es l

l = media o promedio de éxitos por unidad de tiempo, área o producto

e = 2.718

x = variable que nos denota el número de éxitos que se desea que ocurra

Hay

...

Descargar como (para miembros actualizados) txt (17 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com