CONTAMINACON
Enviado por laurithadilana • 8 de Diciembre de 2012 • 392 Palabras (2 Páginas) • 442 Visitas
Cada muestra de tamaño n que podemos extraer de una población proporciona una media. Si consideramos cada una de estas medias como valores de una variable aleatoria podemos estudiar su distribución que llamaremos distribución muestral de medias.
Si tenemos una población normal N(m,s) y extraemos de ella muestras de tamaño n, la distribución muestral de medias sigue también una distribución normal
Si la población no sigue una distribución normal pero n>30, aplicando el llamado Teorema central del límite la distribución muestral de medias se aproxima también a la normal anterior.
1) Las notas de cierto examen se distribuyen según una normal de media 5,8 y desviación típica 2,4. Hallar la probabilidad de que la media de una muestra tomada al azar de 16 estudiantes esté comprendida entre 5 y 7
Cada muestra de tamaño n que podemos extraer de una población proporciona una media. Si consideramos cada una de estas medias como valores de una variable aleatoria podemos estudiar su distribución que llamaremos distribución muestral de medias.
Si tenemos una población normal N(m,s) y extraemos de ella muestras de tamaño n, la distribución muestral de medias sigue también una distribución normal
Si la población no sigue una distribución normal pero n>30, aplicando el llamado Teorema central del límite la distribución muestral de medias se aproxima también a la normal anterior.
1) Las notas de cierto examen se distribuyen según una normal de media 5,8 y desviación típica 2,4. Hallar la probabilidad de que la media de una muestra tomada al azar de 16 estudiantes esté comprendida entre 5 y 7 Cada muestra de tamaño n que podemos extraer de una población proporciona una media. Si consideramos cada una de estas medias como valores de una variable aleatoria podemos estudiar su distribución que llamaremos distribución muestral de medias.
Si tenemos una población normal N(m,s) y extraemos de ella muestras de tamaño n, la distribución muestral de medias sigue también una distribución normal
Si la población no sigue una distribución normal pero n>30, aplicando el llamado Teorema central del límite la distribución muestral de medias se aproxima también a la normal anterior.
1) Las notas de cierto examen se distribuyen según una normal de media 5,8 y desviación típica 2,4. Hallar la probabilidad de que la media de una muestra tomada al azar de 16 estudiantes esté comprendida entre 5 y 7
...