ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Calculo integral - Actividad


Enviado por   •  26 de Noviembre de 2015  •  Documentos de Investigación  •  342 Palabras (2 Páginas)  •  212 Visitas

Página 1 de 2

La suma de Riemann por la izquierda de la siguiente manera:

Suma de Riemann por la izquierda =

n − 1

n = 0

f(xk)Δx

= f(x0)Δx + f(x1)Δx + ... + f(xn − 1)Δx

= [f(x0) + f(x1) + ... + f(xn − 1)]Δx

La suma de Riemann por la izquierda da el área que se muestra a continuación.

Observa que el lado izquierdo de cada rectángulo coincide con la altura de la gráfica -- de ahí el nombre "suma izquierda". La suma de Riemann por la derecha se define de manera similar:

Suma Riemann por la derecha

La suma de Riemann por la derecha da el áreal que se muestra a continuación.

Ejemplo 1 Calcular la suma de Riemann por la izquierda y derecha

Sea

f(x) = 1 − x2.

Calcular la suma de Riemann por la izquierda y derecha para aproximar

0 1

f(x) dx

con

n = 8.

Punto medio: se toma como valor tj el punto medio entre los límites del sub intervalo, es decir, (xj-1 + xj) / 2. Gráficamente:

Sumas trapezoidales

Un trapezoide es una región de cuatro lados con dos lados opuestos paralelos. En la figura siguiente, los dos lados verticales son paralelos.

El área de un trapezoide es la longitud promedio de los lados paralelos, por la distacia entre ellos.

Dado una partición de

[a, b]

Como arriba, podemos definir de la suma trapezoide asociada para corresponder al área que se muestra a continuación.

Las áreas de los trapezoides individuales (de izquierda a derecha) son las siguientes.

Trapezoide más a la izquierda: 1

2

(f(x0) + f(x1))Δx Altura promedio

×

anchura

Trapezoide siguiente:

1

2

(f(x1) + f(x2))Δx

. . .

Último trapezoide:

1

2

(f(xn − 1) + f(xn))Δx

Agregando obtenemos la suma trapezoide:

Suma trapezoide =

1

2

(f(x0) + f(x1))Δx +

1

2

(f(x1) + f(x2))Δx + ... +

1

2

(f(xnµ1) + f(xn))Δx

Simplificado da

Suma trapezoide

La aproximación trapezoidal de

a b

f(x) dx

asociada con la partición

a = x0 < x1 < ... < xn = b

se da por

Suma trapezoide =

1

2

[f(x0) + 2f(x1) + ... + 2f(xn − 1) + f(xn)]Δx

...

Descargar como (para miembros actualizados) txt (2 Kb) pdf (39 Kb) docx (570 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com