Ciencia_dinamica
Enviado por daslymbm • 7 de Abril de 2014 • 1.874 Palabras (8 Páginas) • 181 Visitas
Para otros usos de este término, véase Dinámica (desambiguación).
La dinámica es la rama de la física (específicamente de la mecánica clásica) que describe la evolución en el tiempo de un sistema físico en relación con las causas que provocan los cambios de estado físico y/o estado de movimiento. El objetivo de la dinámica es describir los factores capaces de producir alteraciones de un sistema físico, cuantificarlos y plantear ecuaciones de movimiento o ecuaciones de evolución para dicho sistema de operación.
El estudio de la dinámica es prominente en los sistemas mecánicos (clásicos, relativistas o cuánticos), pero también en la termodinámica y electrodinámica. En este artículo se describen los aspectos principales de la dinámica en sistemas mecánicos, y se reserva para otros artículos el estudio de la dinámica en sistemas no mecánicos.
En otros ámbitos científicos, como la economía o la biología, también es común hablar de dinámica en un sentido similar al de la física, para referirse a las características de la evolución a lo largo del tiempo del estado de un determinado sistema.
Índice [ocultar]
1 Historia
2 Cálculo en dinámica
2.1 Leyes de conservación
2.2 Ecuaciones de movimiento
3 Dinámica de sistemas mecánicos
3.1 Dinámica de la partícula
3.2 Dinámica del sólido rígido
4 Conceptos relacionados con la dinámica
4.1 Inercia
4.2 Trabajo y energía
4.3 Fuerza y potencial
5 Véase también
6 Referencias
6.1 Bibliografía
Historia[editar]
Una de las primeras reflexiones sobre las causas de movimiento es la debida al filósofo griego Aristóteles. Aristóteles definió el movimiento, lo dinámico (το δυνατόν), como:
"La realización acto, de una capacidad o posibilidad de ser potencia, en tanto que se está actualizando"
Por otra parte, a diferencia del enfoque actual Aristóteles invierte el estudio de la cinemática y dinámica, estudiando primero las causas del movimiento y después el movimiento de los cuerpos. Este enfoque dificultó el avance en el conocimiento del fenómeno del movimiento hasta, en primera instancia, San Alberto Magno, que fue quien hizo notar esta dificultad, y en última instancia hasta Galileo Galilei e Isaac Newton. De hecho, Thomas Bradwardine, en 1328, presentó en su De proportionibus velocitatum in motibus una ley matemática que enlazaba la velocidad con la proporción entre motivos a fuerzas de resistencia; su trabajo influyó la dinámica medieval durante dos siglos, pero, por lo que se ha llamado un accidente matemático en la definición de «acrecentar», su trabajo se descartó y no se le dio reconocimiento histórico en su día.1
Los experimentos de Galileo sobre cuerpos uniformemente acelerados condujeron a Newton a formular sus leyes fundamentales del movimiento, las cuales presentó en su obra principal Philosophiae Naturalis Principia Mathematica Los científicos actuales consideran que las leyes que formuló Newton dan las respuestas correctas a la mayor parte de los problemas relativos a los cuerpos en movimiento, pero existen excepciones. En particular, las ecuaciones para describir el movimiento no son adecuadas cuando un cuerpo viaja a altas velocidades con respecto a la velocidad de la luz o cuando los objetos son de tamaño extremadamente pequeños comparables a los tamaños.
Cálculo en dinámica[editar]
A través de los conceptos de desplazamiento, velocidad y aceleración es posible describir los movimientos de un cuerpo u objeto sin considerar cómo han sido producidos, disciplina que se conoce con el nombre de cinemática. Por el contrario, la dinámica es la parte de la mecánica que se ocupa del estudio del movimiento de los cuerpos sometidos a la acción de las fuerzas.
El cálculo dinámico se basa en el planteamiento de ecuaciones del movimiento y su integración. Para problemas extremadamente sencillos se usan las ecuaciones de la mecánica newtoniana directamente auxiliados de las leyes de conservación. La ecuación esencial de la dinámica es la segunda ley de Newton (o ley de Newton-Euler) F=m*a donde F es la sumatoria de las fuerzas aplicadas, la m la sumatoria de todas las masa y la a la aceleración.
Leyes de conservación[editar]
Artículo principal: Ley de conservación
Las leyes de conservación pueden formularse en términos de teoremas que establecen bajo qué condiciones concretas una determinada magnitud "se conserva" (es decir, permanece constante en valor a lo largo del tiempo a medida que el sistema se mueve o cambia con el tiempo). Además de la ley de conservación de la energía las otras leyes de conservación importante toman la forma de teoremas vectoriales. Estos teoremas son:
El teorema de la cantidad de movimiento, que para un sistema de partículas puntuales requiere que las fuerzas de las partículas sólo dependan de la distancia entre ellas y estén dirigidas según la línea que las une. En mecánica de medios continuos y mecánica del sólido rígido pueden formularse teoremas vectoriales de conservación de cantidad de movimiento.
El teorema del momento cinético, establece que bajo condiciones similares al anterior teorema vectorial la suma de momentos de fuerza respecto a un eje es igual a la variación temporal del momento angular.
Ecuaciones de movimiento[editar]
Artículo principal: Ecuación de movimiento
Existen varias formas de plantear ecuaciones de movimiento que permitan predecir la evolución en el tiempo de un sistema mecánico en función de las condiciones iniciales y las fuerzas actuantes. En mecánica clásica existen varias formulaciones posibles para plantear ecuaciones:
La mecánica newtoniana que recurre a escribir directamente ecuaciones diferenciales ordinarias de segundo orden en términos de fuerzas y en coordenadas cartesianas. Este sistema conduce a ecuaciones difícilmente integrables por medios elementales y sólo se usa en problemas extremadamente sencillos, normalmente usando sistemas de referencia inerciales.
La mecánica lagrangiana, este método usa también ecuaciones diferenciales ordinarias de segundo orden, aunque permite el uso de coordenadas totalmente generales, llamadas coordenadas generalizadas, que se adapten mejor a la geometría del problema planteado. Además las
...