ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Codigo Genetico


Enviado por   •  1 de Septiembre de 2014  •  2.145 Palabras (9 Páginas)  •  2.018 Visitas

Página 1 de 9

Código genético

El código genético es el conjunto de reglas que define la traducción de una secuencia de nucleótidos en el ARN a una secuencia de aminoácidos en una proteína, en todos los seres vivos. El código define la relación entre secuencias de tres nucleótidos, llamadas codones, y aminoácidos. De ese modo, cada codón se corresponde con un aminoácido específico.

La secuencia del material genético se compone de cuatro bases nitrogenadas distintas, que tienen una función equivalente a letras en el código genético: adenina(A), timina (T), guanina (G) y citosina (C) en el ADN y adenina (A), uracilo (U),guanina (G) y citosina (C) en el ARN.

Debido a esto, el número de codones posibles es 64, de los cuales 61 codifican aminoácidos (siendo además uno de ellos el codón de inicio, AUG) y los tres restantes son sitios de parada (UAA, llamado ocre; UAG, llamado ámbar; UGA, llamado ópalo). La secuencia de codones determina la secuencia de aminoácidos en una proteína en concreto, que tendrá una estructura y una función específicas.

Descubrimiento del código genético

Cuando James Watson, Francis Crick, Maurice Wilkins y Rosalind Franklin crearon el modelo de la estructura del ADN se comenzó a estudiar en profundidad el proceso de traducción en las proteínas.

En 1955, Severo Ochoa y Marianne Grunberg-Manago aislaron la enzimapolinucleótido fosforilasa, capaz de sintetizar ARNm sin necesidad de modelo a partir de cualquier tipo de nucleótidos que hubiera en el medio. Así, a partir de un medio en el cual tan sólo hubiera UDP (urdín difosfato) se sintetizaba un ARNm en el cual únicamente se repetía el ácido uridílico, es decir, un poli-U.

George Gamow postuló que un código de codones de tres bases debía ser el empleado por las células para codificar la secuencia de aminoácidos, ya que tres es el mínimo número entero que permite, con cuatro bases nitrogenadas distintas, al menos 20 combinaciones (64 para ser exactos).

Los codones constan de tres nucleótidos, esto fue demostrado por primera vez en el experimento de Crick, Brenner y colaboradores. Marshall Nirenberg y Heinrich J. Matthaei en 1961 en los Institutos Nacionales de Salud descubrieron la primera correspondencia codón-aminoácido. Empleando un sistema libre de células, tradujeron una secuencia ARN de poli-uracilo (UUU...) y descubrieron que el polipéptido que habían sintetizado sólo contenía fenilalanina. De esto se deduce que el codón UUU especifica el aminoácido fenilalanina. Continuando con el trabajo anterior, Nirenberg y Philip Leder fueron capaces de determinar la traducción de 54 codones, utilizando diversas combinaciones de ARNm, pasadas a través de un filtro que contiene ribosomas. Los ARNt se unían a tripletes específicos.

Posteriormente, Har Gobind Khorana completó el código, y poco después, Robert W. Holley determinó la estructura del ARN de transferencia, la molécula adaptadora que facilita la traducción. Este trabajo se basó en estudios anteriores de Severo Ochoa, quien recibió el premio Nobel en 1959 por su trabajo en la enzimología de la síntesis de ARN. En 1968, Khorana, Holley y Nirenberg recibieron el Premio Nobel en Fisiología o Medicina por su trabajo.

Transferencia de información

El genoma de un organismo se encuentra en el ADN o, en el caso de algunos virus, en el ARN. La porción de genoma que codifica varias proteínas o un ARN se conoce como gen. Esos genes que codifican proteínas están compuestos por unidades de trinucleótidos llamadas codones, cada una de los cuales codifica un aminoácido. Cada subunidad nucleotídica está formada por un fosfato, una desoxirribosa y una de las cuatro posibles bases nitrogenadas. Las bases purínicas adenina (A) y guanina (G) son más grandes y tienen dos anillos aromáticos. Las bases pirimidínicas citosina (C) y timina (T) son más pequeñas y sólo tienen un anillo aromático. En la configuración en doble hélice, dos cadenas de ADN están unidas entre sí por puentes de hidrógeno en una asociación conocida como emparejamiento de bases. Además, estos puentes siempre se forman entre una adenina de una cadena y una timina de la otra y entre una citosina de una cadena y una guanina de la otra. Esto quiere decir que el número de residuos A y T será el mismo en una doble hélice y lo mismo pasará con el número de residuos de G y C. En el ARN, la timina (T) se sustituye por uracilo (U), y la desoxirribosa por una ribosa.

Cada gen que codifica una proteína se transcribe en una molécula plantilla, que se conoce como ARN mensajero o ARNm. Éste, a su vez, se traduce en el ribosoma, en una cadena polipeptídica (formada por aminoácidos). En el proceso de traducción se necesita un ARN de transferencia, o ARNt, específico para cada aminoácido, con dicho aminoácido unido a él de forma covalente, guanosina trifosfato como fuente de energía y ciertos factores de traducción. Los ARNt tienen anticodones complementarios a los codones del ARNm y se pueden “cargar” covalentemente en su extremo 3' terminal con aminoácidos. Los ARNt individuales se cargan con aminoácidos específicos gracias a las enzimas llamadas aminoacil-ARNt sintetasas, que tienen alta especificidad tanto por un aminoácido como por un ARNt. Esta alta especificidad es el motivo fundamental del mantenimiento de la fidelidad en la traducción de proteínas.

Para un codón de tres nucleótidos (un triplete) son posibles 4³ = 64 combinaciones diferentes; los 64 codones están asignados a aminoácido o a señales de parada en la traducción. Si, por ejemplo, tenemos una secuencia de ARN, UUUAAACCC, y la lectura del fragmento empieza en la primera U (convenio 5' a 3'), habría tres codones que serían UUU, AAA y CCC, cada uno de los cuales especifica un aminoácido. Esta secuencia de ARN se traducirá en una secuencia de tres aminoácidos.

Características

Universalidad

El código genético es compartido por todos los organismos conocidos, incluyendo virus y organelos, aunque pueden aparecer pequeñas diferencias. Así, por ejemplo, el codón UUU codifica el aminoácido fenilalanina tanto en bacterias como en arqueas y en eucariontes. Este hecho indica que el código genético ha tenido un origen único en todos los seres vivos conocidos.

Gracias a la genética molecular, se han distinguido 22 códigos genéticos,1 que se diferencian del llamado código genético estándar por el significado de uno o más codones. La mayor diversidad se presenta en las mitocondrias, orgánulos de las células eucariotas que se originaron evolutivamente a partir de miembros del dominio Bacteria a través de un proceso de endosimbiosis. El genoma nuclear de los eucariotas sólo suele diferenciarse del código estándar en los codones de iniciación y terminación.

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com