ELECTRICIDAD
Enviado por davidcr06009 • 11 de Mayo de 2014 • 1.100 Palabras (5 Páginas) • 240 Visitas
Potencia aparente
Figura 2.- Relación entre potencias activas, aparentes y reactivas
La potencia aparente (también llamada compleja) de un circuito eléctrico de corriente alterna es la suma de la energía que disipa dicho circuito en cierto tiempo en forma de calor o trabajo y la energía utilizada para la formación de los campos eléctricos y magnéticos de sus componentes.
Esta potencia no es la realmente consumida, salvo cuando el factor de potencia es la unidad (cos _=1), y señala que la red de alimentación de un circuito no sólo ha de satisfacer la energía consumida por los elementos resistivos, sino que también ha de contarse con la que van a "almacenar" bobinas y condensadores. Se la designa con la letra S y se mide en voltiamperios (VA).
Potencia activa
Es la potencia que representa la capacidad de un circuito para realizar un proceso de transformación de la energía eléctrica en trabajo. Los diferentes dispositivos eléctricos existentes convierten la energía eléctrica en otras formas de energía tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo tanto, la realmente consumida por los circuitos. Cuando se habla de demanda eléctrica, es esta potencia la que se utiliza para determinar dicha demanda.
Se designa con la letra P y se mide en vatios (W). De acuerdo con su expresión, la ley de Ohm y el triángulo de impedancias:
Resultado que indica que la potencia activa es debida a los elementos resistivos.
Potencia reactiva
Esta potencia no tiene tampoco el carácter realmente de ser consumida y sólo aparecerá cuando existan bobinas o condensadores en los circuitos. La potencia reactiva tiene un valor medio nulo, por lo que no produce trabajo útil. Por ello que se dice que es una potencia desvatada (no produce vatios), se mide en voltamperios reactivos (VAR) y se designa con la letra Q.
A partir de su expresión:
Lo que reafirma en que esta potencia es debida únicamente a los elementos reactivos.
Factor de potencia
Figura 1. Triángulo de potencias.
Se define factor de potencia, f.d.p., de un circuito de corriente alterna, como la relación entre la potencia activa, P, y la potencia aparente, S, o bien como el coseno del ángulo que forman los fasores de la intensidad y el voltaje, designándose en este caso como cos_, siendo _ el valor de dicho ángulo. De acuerdo con el triángulo de potencias de la figura 1:
El dispositivo utilizado para medir el f.d.p. se denomina cosímetro.
Influencia del tipo de cargas
El valor del f.d.p. viene determinado por el tipo de cargas conectadas en una instalación. De acuerdo con su definición, el factor de potencia es adimensional y solamente puede tomar valores entre 0 y 1. En un circuito resistivo puro recorrido por una corriente alterna, la intensidad y la tensión están en fase (_=0), esto es, cambian de polaridad en el mismo instante en cada ciclo, siendo por lo tanto el factor de potencia la unidad. Por otro lado, en un circuito reactivo puro, la intensidad y la tensión están en cuadratura (_=90º) siendo nulo el valor del f.d.p.
En la práctica los circuitos no pueden ser puramente resistivos ni reactivos, observándose desfases, más o menos significativos, entre las formas de onda de la corriente y el voltaje. Así, si el f.d.p. está cercano a la unidad, se dirá que es un circuito fuertemente resistivo por lo que su f.d.p. es alto, mientras que si está
cercano a cero que es fuertemente reactivo y su f.d.p. es bajo. Cuando el circuito sea de carácter inductivo, caso más común, se hablará de un f.d.p. en retraso, mientras que se dice en adelanto cuando lo es de carácter capacitivo.
Las cargas inductivas, tales como transformadores, motores de inducción y, en general, cualquier tipo de inductancia (tal como las que acompañan a las lámparas fluorescentes) generan potencia inductiva con la intensidad retrasada respecto a la tensión. Las cargas capacitivas, tales como bancos de condensadores o cables enterrados, generan potencia reactiva con la intensidad adelantada respecto a la tensión.
Mejora del factor de potencia
A menudo es posible ajustar el factor de potencia
...