El estudio de las series
Enviado por zuly.contreras5 • 12 de Diciembre de 2014 • Informe • 221 Palabras (1 Páginas) • 146 Visitas
INTRODUCCIÓN
En matemáticas, una serie es la generalización de la noción de suma a los términos de una sucesión infinita. Informalmente, es el resultado de sumar los términos: a1 + a2 + a3 + • • lo cual suele escribirse en forma más compacta con el símbolo de sumatorio: .
El estudio de las series consiste en la evaluación de la suma de un número finito n de términos sucesivos, y mediante un pasaje al límite identificar el comportamiento de la serie a medida que n crece indefinidamente.
Una secuencia o cadena «finita», tiene un primer y último término bien definidos; en cambio en una serie infinita, cada uno de los términos suele obtenerse a partir de una determinada regla o fórmula, o por algún algoritmo. Al tener infinitos términos, esta noción suele expresarse como serie infinita, pero a diferencia de las sumas finitas, las series infinitas requieren de herramientas del análisis matemático para ser debidamente comprendidas y manipuladas. Existe una gran cantidad de métodos para determinar la naturaleza de convergencia o no-convergencia de las series matemáticas, sin realizar explícitamente los cálculos.
En cálculo integral las series sirven para hacer suma de los términos de una sucesión. Se representa una serie con términos, más que nada ayuda a encontrar funciones derivables ya sea finitas o infinitas para encontrar si una gráfica diverge o converge.
...