En mecánica clásica, se dice que una fuerza realiza trabajo cuando altera el estado de movimiento de un cuerpo
Enviado por eduardoruben • 27 de Agosto de 2014 • Examen • 410 Palabras (2 Páginas) • 535 Visitas
En mecánica clásica, se dice que una fuerza realiza trabajo cuando altera el estado de movimiento de un cuerpo. El trabajo de la fuerza sobre ese cuerpo será equivalente a la energía necesaria para desplazarlo.1 El trabajo es una magnitud física escalar que se representa con la letra \ W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.
Ya que por definición el trabajo es un tránsito de energía,2 nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.
Consideremos una partícula P sobre la que actúa una fuerza F, función de la posición de la partícula en el espacio, esto es F=F(\mathbf r) y sea \mathrm d \mathbf r un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo \mathrm d t. Llamamos trabajo elemental, \mathrm d W, de la fuerza \mathbf F durante el desplazamiento elemental \mathrm d \mathbf r al producto escalar \ F \cdot \mathrm d \mathbf r; esto es,
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r \,
Si representamos por \mathrm d s la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es \mathrm d s = |\mathrm d \mathbf r| , entonces el vector tangente a la trayectoria viene dado por \mathbf e_{\text{t}} = \mathrm d \mathbf r / \mathrm d s y podemos escribir la expresión anterior en la forma
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r =
\mathbf F \cdot \mathbf e_{\text{t}} \mathrm d s =
(F \cos\theta )\mathrm d s = F_{\text{s}} \mathrm d s \,
donde \theta representa el ángulo determinado por los vectores \mathrm d \mathbf F y \mathbf e_{\text{t}} y F_{\text{s}} es la componente de la fuerza F en la dirección del desplazamiento elemental \mathrm d \mathbf r.
El trabajo realizado por la fuerza \mathbf F durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo \theta sea agudo, recto u obtuso.
Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales \mathrm d \mathbf r y el trabajo total realizado por la fuerza \mathbf F en ese desplazamiento será la suma de todos esos trabajos elementales; o sea
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r \,
...