ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Espectro Electromagnético


Enviado por   •  13 de Abril de 2015  •  2.525 Palabras (11 Páginas)  •  164 Visitas

Página 1 de 11

1- Espectro Electromagnético

¿Qué es el Espectro Electromagnético?

Se denomina espectro electromagnético a la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden contemplar mediante espectroscopios que, además de permitir observar el espectro, permiten realizar medidas sobre el mismo, como son la longitud de onda, la frecuencia y la intensidad de la radiación. La longitud de una onda es el período espacial de la misma, es decir, la distancia que hay de pulso a pulso.

Frecuencia es una magnitud que mide el número de repeticiones por unidad de tiempo de cualquier fenómeno o suceso periódico.

El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite para la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo aunque formalmente el espectro electromagnético es infinito y continuo.

Para su estudio, el espectro electromagnético se divide en segmentos o bandas, aunque esta división es inexacta.

2 – Análisis Energético

Se puede obtener mucha información acerca de las propiedades físicas de un objeto a través del estudio de su espectro electromagnético, ya sea por la luz emitida (radiación de cuerpo negro) o absorbida por él. Esto es la espectroscopia y se usa ampliamente en astrofísica y química. Para ello se analizan los espectros de emisión y absorción.

El espectro de emisión atómica de un elemento es un conjunto de frecuencias de las ondas electromagnéticas emitidas por átomos de ese elemento, en estado gaseoso, cuando se le comunica energía. El espectro de emisión de cada elemento es único y puede ser usado para determinar si ese elemento es parte de un compuesto desconocido.

El espectro de absorción de un material muestra la fracción de la radiación electromagnética incidente que un material absorbe dentro de un rango de frecuencias. Es, en cierto sentido, el opuesto de un espectro de emisión. Cada elemento químico posee líneas de absorción en algunas longitudes de onda, hecho que está asociado a las diferencias de energía de sus distintos orbitales atómicos. De hecho, se emplea el espectro de absorción para identificar los elementos componentes de algunas muestras, como líquidos y gases; más allá, se puede emplear para determinar la estructura de compuestos orgánicos. Un ejemplo de las implicaciones de un espectro de absorción es que aquel objeto que lo haga con los colores azul, verde y amarillo aparecerá de color rojo cuando incida sobre él luz blanca.

En la imagen podemos ver un ejemplo de aplicación del estudio de los espectros. Cuando la luz índice sobre una nube de gas, su posterior estudio, revela los componentes de los que está formada, ya que sólo pasarán aquellas longitudes de onda que no hayan sido absorbidas por la nube. Cada elemento tiene su propia firma espectral.

3 – Polarización

Fig.1 - Una onda electromagnética polarizada. Las oscilaciones del campo eléctrico sólo se producen en el plano del tiempo, son perpendiculares a las oscilaciones del campo magnético, y ambas son perpendiculares a la dirección de propagación de la onda.

Campo eléctrico y campo magnético de una onda electromagnética

Una onda electromagnética es una onda transversal compuesta por un campo eléctrico y un campo magnético simultáneamente. Ambos campos oscilan perpendicularmente entre sí; las ecuaciones de Maxwell modelan este comportamiento.

Polarización de ondas planas

Un ejemplo sencillo para visualizar la polarización es el de una onda plana, que es una buena aproximación de la mayoría de las ondas luminosas.

Descomposición del vector de campo eléctrico en dos componentes.

En un punto determinado la onda del campo eléctrico puede tener dos componentes vectoriales perpendiculares (transversales) a la dirección de propagación. Las dos componentes vectoriales transversales varían su amplitud con el tiempo, y la suma de ambas va trazando una figura geométrica. Si dicha figura es una recta, la polarización se denomina lineal; si es un círculo, la polarización es circular; y si es una elipse, la polarización es elíptica.

Si la onda electromagnética es una onda armónica simple, como en el caso de una luz monocromática, en que la amplitud del vector de campo eléctrico varía de manera sinusoidal, los dos componentes tienen exactamente la misma frecuencia. Sin embargo, estos componentes tienen otras dos características de definición que pueden ser diferentes.

--Primero, los dos componentes pueden no tener la misma amplitud.

--Segundo, los dos componentes pueden no tener la misma fase, es decir, pueden no alcanzar sus máximos y mínimos al mismo tiempo.

Tipos de polarización

La forma trazada sobre un plano fijo por un vector de campo eléctrico de una onda plana que pasa sobre él es una “curva de Lissajous” y puede utilizarse para describir el tipo de polarización de la onda. Las siguientes figuras muestran algunos ejemplos de la variación del vector de campo eléctrico (azul) con el tiempo (el eje vertical), con sus componentes X e Y (roja/izquierda y verde/derecha), y la trayectoria trazada por la punta del vector en el plano (púrpura). Cada uno de los tres ejemplos corresponde a un tipo de polarización.

Lineal Circular Elíptica

En la figura de la izquierda, la polarización es lineal y la oscilación del plano perpendicular a la dirección de propagación se produce a lo largo de una línea recta. Se puede representar cada oscilación descomponiéndola en dos ejes X e Y.

La polarización lineal se produce cuando ambas componentes están en fase (con un ángulo de desfase nulo, cuando ambas componentes alcanzan sus máximos y mínimos simultáneamente) o en contrafase (con un ángulo de desfase de 180º, cuando cada una de las componentes alcanza

...

Descargar como (para miembros actualizados) txt (16 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com