Estadistica Inferencial I
Enviado por axelito93 • 12 de Junio de 2013 • 2.648 Palabras (11 Páginas) • 286 Visitas
Unidad IV.- pruebas de hipótesis con dos muestras y varias muestras de datos numéricos.
4.1.- Introducción
Introducción: Prueba de hipótesis En esta unidad nos concentraremos en la prueba de hipótesis, otro aspecto de la inferencia estadística que al igual que la estimación del intervalo de confianza, se basa en la información de la muestra. Se desarrolla una metodología paso a paso que le permita hacer inferencias sobre un parámetro poblacional mediante el análisis diferencial entre los resultados observados (estadístico de la muestra)y los resultados de la muestra esperados si la hipótesis subyacente es realmente cierta. En el problema de estimación se trata de elegir el valor de un parámetro de la población, mientras que en las pruebas de hipótesis se trata de decidir entre aceptar o rechazar un valor especificado (por ejemplo, si el nivel de centramiento de un proceso es o no lo es).Prueba de hipótesis: Estadísticamente una prueba de hipótesis es cualquier afirmación acerca de una población y/o sus parámetros. (Mendenhall,W y Beaver,2002)
Una prueba de hipótesis consiste en contrastar dos hipótesis estadísticas. Tal contraste involucra la toma de decisión acerca de las hipótesis. La decisión consiste en rechazar o no una hipótesis en favor de la otra. Una hipótesis estadística se denota por “H” y son dos: - Ho: hipótesis nula - H1: hipótesis alternativa Partes de una hipótesis 1-La hipótesis nula “Ho” 2-La hipótesis alternativa “H1” 3-El estadístico de prueba 4-Errores tipo I y II 5-La región de rechazo (crítica) 6-La toma de decisión 1. Concepto: Una prueba de hipótesis estadística es una conjetura de una o más poblaciones. Nunca se sabe con absoluta certeza la verdad o falsedad de una hipótesis estadística, a no ser que se examine la población entera. Esto por su puesto sería impráctico en la mayoría de las situaciones. En su lugar, se toma una muestra aleatoria de la población de interés y se utilizan los datos que contiene tal muestra para proporcionar evidencia que confirme o no la hipótesis. La evidencia de la muestra que es un constante con la hipótesis planteada conduce a un rechazo de la misma mientras que la evidencia que apoya la hipótesis conduce a su aceptación. Definición de prueba de hipótesis estadística es que cuantifica el proceso de toma de decisiones. Por cada tipo de prueba de hipótesis se puede calcular una prueba estadística apropiada. Esta prueba estadística mide el acercamiento del calor de la muestra (como un promedio) a la hipótesis nula. La prueba estadística, sigue una distribución estadística bien conocida (normal, etc.) o se puede desarrollar una distribución para la prueba estadística particular. La distribución apropiada de la prueba estadística se divide en dos regiones: una región de rechazo y una de no rechazo. Si la prueba estadística cae en esta última región no se puede rechazar la hipótesis nula y se llega a la conclusión de que el proceso funciona correctamente. Al tomar la decisión con respecto a la hipótesis nula, se debe determinar el valor crítico en la distribución estadística que divide la región del rechazo (en la cual la hipótesis nula no se puede rechazar) de la región de rechazo. A hora bien el valor crítico depende del tamaño de la región de rechazo.
4.2.- Distribuciones normales y “t” de Student.
Enestadísticayprobabilidadse llama distribución normal, distribución de Gauss odistribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en fenómenos reales. La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro. Esta curva se conoce como campana de Gauss. La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos. Mientras que los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes.
Aparece de manera natural al realizar la prueba t de Student para la determinación de las diferencias entre dos medias muéstrales y para la construcción del intervalo de confianza para la diferencia entre las medias de dos poblaciones cuando se desconoce la desviación típica de una población y ésta debe ser estimada a partir de los datos de una muestra.
4.3.- pruebas de significancia.
Las pruebas de significancia estadística son un procedimiento que brinda un criterio objetivo para calificar las diferencias que se presentan al comparar los resultados de dos muestras, con el objetivo de explicar si dichas diferencias se mantienen dentro de los límites previstos por el diseño estadístico (un error y una confianza esperados) o si, por el contrario, la diferencia entre ellas resulta lo suficientemente grande como para inferir que ha ocurrido un cambio real en el indicador.
Cuando se prueba una hipótesis, la probabilidad máxima con la que estaría dispuesto a arriesgarse a cometer un error Tipo I se llama nivel de significancia de la prueba esta probabilidad con frecuencia denotada por α, por lo general se especifica antes de seleccionar cualquier muestra para que los resultados obtenidos no influyan en la decisión.
En la práctica se utiliza un nivel de significancia de 0.05 o 0.01, aunque también se usan otros valores. Sí, por ejemplo, se elige el nivel de significancia de 0.05 (o 5%) diseñar una regla de decisión, existen aproximadamente 5 posibilidades en 100 de que se rechace la hipótesis cuando debe aceptarse; es decir, se tiene una confianza de 95% de haber tomado la decisión correcta. En tal caso, se dice que la hipótesis se rechazó al nivel de significancia de 0.05 o bien que la hipótesis tiene una probabilidad de 0.05 de ser falsa. (Murray R. Spiegel, 2001, pág. 219).
4.4.- Comparación de dos muestras independientes: pruebas “t” para las diferencias entre dos medias.
Para comparar las medias de dos muestras aleatorias procedentes de dos poblacionesnormales e independientes, se utiliza el procedimiento Prueba T para muestrasindependientes, y para ello, se selecciona:
A continuación se abre una ventana con los siguientes campos: Contrastar variables: donde se han de introducir las variables que se van a analizar, es decir, aquellas variables sobre las que se va a contrastar si hay o no, diferencias de grupos. Variable de agrupación: aquí se debe introducir la variable que se utiliza para definir los grupos de sujetos sobre los que se estudian las diferencias. Entonces el sistema activa el botón definir grupos y
...