ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Factorizacion


Enviado por   •  7 de Diciembre de 2014  •  743 Palabras (3 Páginas)  •  216 Visitas

Página 1 de 3

Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos:

Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación.

Una ecuación se denomina identidad si la igualdad se cumple para cualquier valor de las variables; si la ecuación se cumple para ciertos valores de las variables pero no para otros, la ecuación es condicional.

Un término es una expresión algebraica que sólo contiene productos de constantes y variables; 2x, – a, 3x son algunos ejemplos de términos.

La parte numérica de un término se denomina coeficiente.

Los coeficientes de cada uno de los ejemplos anteriores son 2, – 1, y 3.

Una expresión que contiene un solo término se denomina monomio; si contiene dos términos se llama binomio y si contiene tres términos, es un trinomio.

Un polinomio es una suma (o diferencia) finita de términos.

En este contexto, el grado es el mayor exponente de las variables en un polinomio. Por ejemplo, si el mayor exponente de la variable es 3, como en ax3 + bx2 + cx, el polinomio es de tercer grado.

Una ecuación lineal en una variable es una ecuación polinómica de primer grado; es decir, una ecuación de la forma ax + b = 0.

Se les llama ecuaciones lineales porque representan la fórmula de una línea recta en la geometría analítica.

Una ecuación cuadrática en una variable es una ecuación polinómica de segundo grado, es decir, de la forma ax2 + bx + c = 0.

Un número primo es un entero (número natural) que sólo se puede dividir exactamente por sí mismo y por 1. Así, 2, 3, 5, 7, 11 y 13 son todos números primos.

Las potencias de un número se obtienen mediante sucesivas multiplicaciones del número por sí mismo. El término a elevado a la tercera potencia, por ejemplo, se puede expresar como a·a·a o a3

Los factores primos de un cierto número son aquellos factores en los que éste se puede descomponer de manera que el número se puede expresar sólo como el producto de números primos y sus potencias.

Descomposición de números naturales en sus factores primos

Por ejemplo, un número natural como 20 puede expresarse como un producto de números de diferentes formas:

20 = 2 • 10 = 1 • 20 = 4 • 5

En cada uno de estos casos, los números

que forman el producto son los factores.

Es decir, cuando expresamos el número 20 como el producto 2 • 10, a cada uno de los números (2 y 10) se les denomina factor.

En el caso de 1 • 20 los factores son 1 y 20 y finalmente en el caso de 4 • 5, los factores son 4 y 5.

Cada uno de los números 1, 2, 4, 5, 10, 20 se denominan a su vez divisores de 20.

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com