Factorizacion
Enviado por crismoy • 24 de Enero de 2015 • 432 Palabras (2 Páginas) • 177 Visitas
Factorización
Caso I - Factor común
Sacar el factor común es añadir la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes, y para sacar esto, hay una regla muy sencilla que dice: Cuadrado del primer término más o menos cuadrado del segundo por el primero más cuadrado del segundo, y no hay que olvidar, que los dos que son positivos iguales funcionan como el primer término, sabiendo esto, será sumamente sencillo resolver los factores comunes.
Factor común monomio
Factor común por agrupación de términos
Factor común polinomio
Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con dos.
un ejemplo:
Se aprecia claramente que se está repitiendo el polinomio (x-y), entonces ese será el factor común. El otro factor será simplemente lo que queda del polinomio original, es decir:
La respuesta es:
En algunos casos se debe utilizar el número 1, por ejemplo:
Se puede utilizar como
Entonces la respuesta es:
]Caso II - Factor común por agrupación de términos
Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos.
Un ejemplo numérico puede ser:
entonces puedes agruparlos de la siguiente manera:
Aplicamos el caso I (Factor común)
Caso III - Trinomio Cuadrado Perfecto
Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un Trinomio Cuadrado Perfecto debemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término
Ejemplo 1:
Ejemplo 2:
Ejemplo 3:
Ejemplo 4:
Organizando los términos tenemos
Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:
Al verificar que el doble producto del primero por el segundo término es -20xy determinamos que es correcta la solución. De no ser así, esta solución no aplicaría
agradezcan porfa
...