Fision Y Fusion Nuclear
Enviado por madara2231 • 4 de Junio de 2013 • 4.046 Palabras (17 Páginas) • 706 Visitas
En física nuclear, la fisión es una reacción nuclear, lo que significa que tiene lugar en el núcleo atómico. La fisión ocurre cuando un núcleo pesado se divide en dos o más núcleos pequeños, además de algunos subproductos como neutrones libres, fotones (generalmente rayos gamma) y otros fragmentos del núcleo como partículas alfa (núcleos de helio) y beta (electrones y positrones de alta energía).
Mecanismo
La fisión de núcleos pesados es un proceso exotérmico lo que supone que se liberan cantidades sustanciales de energía. El proceso genera mucha más energía que la liberada en las reacciones químicas convencionales, en las que están implicadas las cortezas electrónicas; la energía se emite, tanto en forma de radiación gamma como de energía cinética de los fragmentos de la fisión, que calentarán la materia que se encuentre alrededor del espacio donde se produzca la fisión.
La fisión se puede inducir por varios métodos, incluyendo el bombardeo del núcleo de un átomo fisionable con una partícula de la energía correcta; la otra partícula es generalmente un neutrón libre. Este neutrón libre es absorbido por el núcleo, haciéndolo inestable (a modo de ejemplo, se podría pensar en la inestabilidad de una pirámide de naranjas en el supermercado, al lanzarse una naranja contra ella a la velocidad correcta). El núcleo inestable entonces se partirá en dos o más pedazos: los productos de la fisión que incluyen dos núcleos más pequeños, hasta siete neutrones libres (con una media de dos y medio por reacción), y algunos fotones.
Los núcleos atómicos lanzados como productos de la fisión pueden ser varios elementos químicos. Los elementos que se producen son resultado del azar, pero estadísticamente el resultado más probable es encontrar núcleos con la mitad de protones y neutrones del átomo fisionado original.
Los productos de la fisión son generalmente altamente radiactivos, no son isótopos estables; estos isótopos entonces decaen, mediante cadenas de desintegración.
Fisión fría y rotura de pares de nucleones
La mayor parte de las investigaciones sobre fisión nuclear se basan en la distribución de masa y energía cinética de los fragmentos de fisión. Sin embargo, esta distribución es perturbada por la emisión de neutrones por parte de los fragmentos antes de llegar a los detectores.
Aunque con muy baja probabilidad, en los experimentos se han detectado eventos de fisión fría, es decir fragmentos con tan baja energía de excitación que no emiten neutrones. Sin embargo, aún en esos casos, se observa la rotura de pares de nucleones, la que se manifiesta como igual probabilidad de obtener fragmentos con número par o impar de nucleones. Los resultados de estos experimentos permiten comprender mejor la dinámica de la fisión nuclear hasta el punto de escisión, es decir, antes de que se desvanezca la fuerza nuclear entre los fragmentos.
Induciendo la fisión
Aunque la fisión es prácticamente la desintegración de materia radiactiva, comenzada a menudo de la manera más fácil posible (inducido), que es la absorción de un neutrón libre, puede también ser inducida lanzando otras cosas en un núcleo fisionable. Estas otras cosas pueden incluir protones, otros núcleos, o aún los fotones de gran energía en cantidades muy altas (porciones de rayos gamma).
Muy rara vez, un núcleo fisionable experimentará la fisión nuclear espontánea sin un neutrón entrante.
Cuanto más pesado es un elemento más fácil es inducir su fisión. La fisión en cualquier elemento más pesado que el hierro produce energía, y la fisión en cualquier elemento más liviano que el hierro requiere energía. Lo contrario también es verdad en las reacciones de fusión nuclear (la fusión de los elementos más livianos que el hierro produce energía y la fusión de los elementos más pesados que el hierro requiere energía).
Los elementos más frecuentemente usados para producir la fisión nuclear son el uranio y el plutonio. El uranio es el elemento natural más pesado; el plutonio experimenta desintegraciones espontáneas y tiene un período de vida limitado. Así pues, aunque otros elementos pueden ser utilizados, estos tienen la mejor combinación de abundancia y facilidad de fisión.
Reacción en cadena
Una reacción en cadena ocurre como sigue: un acontecimiento de fisión empieza lanzando 2 ó 3 neutrones en promedio como subproductos. Estos neutrones se escapan en direcciones al azar y golpean otros núcleos, incitando a estos núcleos a experimentar fisión. Puesto que cada acontecimiento de fisión lanza 2 o más neutrones, y estos neutrones inducen otras fisiones, el proceso se acelera rápidamente y causa la reacción en cadena. El número de neutrones que escapan de una cantidad de uranio depende de su área superficial. Solamente los materiales fisibles son capaces de sostener una reacción en cadena sin una fuente de neutrones externa. Para que la reacción en cadena de fisión se lleve a cabo es necesario adecuar la velocidad de los neutrones libres, ya que si impactan con gran velocidad sobre el núcleo del elemento fisible, puede que simplemente lo atraviese o lo impacte, y que este no lo absorba.
Masa crítica
La masa crítica es la mínima cantidad de material requerida para que el material experimente una reacción nuclear en cadena. La masa crítica de un elemento fisionable depende de su densidad y de su forma física (barra larga, cubo, esfera, etc.). Puesto que los neutrones de la fisión se emiten en direcciones al azar, para maximizar las ocasiones de una reacción en cadena, los neutrones deberán viajar tan lejos como sea posible y de esa forma maximizar las posibilidades de que cada neutrón choque con otro núcleo. Así, una esfera es la mejor forma y la peor es probablemente una hoja aplanada, puesto que la mayoría de los neutrones volarían de la superficie de la hoja y no chocarían con otros núcleos.
También es importante la densidad del material. Si el material es gaseoso, es poco probable que los neutrones choquen con otro núcleo porque hay demasiado espacio vacío entre los átomos y un neutrón volaría probablemente entre ellos sin golpear nada. Si el material se pone bajo alta presión, los átomos estarán mucho más cercanos y la probabilidad de una reacción en cadena es mucho más alta. La alta compresión puede ser alcanzada poniendo el material en el centro de una implosión, o lanzando un pedazo de ella contra otro pedazo de ella muy fuertemente (con una carga explosiva, por ejemplo). Una masa crítica del material que ha comenzado una reacción en cadena se dice que se convierte en supercrítica.
Moderadores
Únicamente con juntar mucho uranio en un solo lugar no es suficiente como para comenzar una reacción
...