ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fision Nuclear Renegerativa Y Fusion Nuclear


Enviado por   •  1 de Junio de 2014  •  4.081 Palabras (17 Páginas)  •  326 Visitas

Página 1 de 17

La fisión nuclear regenerativa y la fusión nuclear.

1.4 Fisión nuclear no renovable de CRIA

La fisión nuclear es una reacción en la cual un núcleo pesado, al ser bombardeado con neutrones, se convierte en inestable y se descompone en dos núcleos, cuyos tamaños son del mismo orden de magnitud, con gran desprendimiento de energía y la emisión de dos o tres neutrones. Éstos, a su vez, pueden ocasionar más fisiones al interaccionar con nuevos núcleos fisionables que emitirán nuevos neutrones y así sucesivamente. Este efecto multiplicador se conoce con el nombre de reacción en cadena. En una pequeña fracción de segundo, el número de núcleos que se han fisionado libera una energía un millón de veces mayor que la obtenida al quemar un bloque de carbón o explotar un bloque de dinamita de la misma masa. Debido a la rapidez a la que tiene lugar una reacción nuclear, la energía se desprende mucho más rápidamente que en una reacción química. Este es el principio en el que está basada la bomba atómica. Las condiciones bajo las que se llegó a su descubrimiento y construcción forman parte de la historia de la humanidad y son conocidas por todos.

Para poder obtener energía manipulando los núcleos de un o varios átomos podemos hacerlo de dos formas distintas. Uniendo núcleos de átomos distintos (entonces hablamos de fusión nuclear) o partiendo núcleos de un determinado átomo (caso de la fisión nuclear)

En energía nuclear llamamos fisión nuclear a la división del núcleo de un átomo. El núcleo se convierte en diversos fragmentos con una masa casi igual a la mitad de la masa original más dos o tres neutrones.

La suma de las masas de estos fragmentos es menor que la masa original. Esta 'falta' de masas (alrededor del 0,1 por ciento de la masa original) se ha convertido en energía según la ecuación de Einstein (E=mc2). En esta ecuación E corresponde a la energía obtenida, m a la masa de la que hablamos y c es una constante, la de la velocidad de la luz: 299.792.458 m/s2.

La fisión nuclear puede ocurrir cuando un núcleo de un átomo pesado captura un neutrón (fisión inducida), o puede ocurrir espontáneamente debido a la inestabilidad del isótopo (fisión espontánea).

Reacciones nucleares en cadena

Una reacción en cadena es un proceso mediante el cual los neutrones que se han liberado en una primera fisión nuclear producen una fisión adicional en al menos un núcleo más. Este núcleo, a su vez produce neutrones, y el proceso se repite.

Estas reacciones en cadena pueden ser controladas o incontroladas. Las reacciones controladas serian las reacciones nucleares producidas en centrales nucleares en que el objetivo es generar energía eléctrica de forma constante. Las reacciones nucleares incontroladas se dan en el caso de armas nucleares.

Si en cada fisión provocada por un neutrón se liberan dos neutrones más, entonces el número de fisiones se duplica en cada generación. En este caso, en 10 generaciones hay 1.024 fisiones y en 80 generaciones aproximadamente 6 x 1023 fisiones.

Masa crítica

La masa crítica es la cantidad mínima de material fisionable para que se mantenga una reacción nuclear en cadena.

Aunque en cada fisión nuclear se producen entre dos y tres neutrones, no todos neutrones están disponibles para continuar con la reacción de fisión; algunos se pierden. Si los neutrones liberados por cada reacción nuclear se pierden a un ritmo más rápido de lo que se forman por la fisión, la reacción en cadena no será autosostenible y se detendrá.

La cantidad de masa crítica de un material fisionable depende de varios factores: propiedades físicas, propiedades nucleares, de su geometría y de su pureza.

Una esfera tiene la superficie mínima posible para una masa dada, y por tanto, reduce al mínimo la fuga de neutrones. Si además bordeamos el material fisionable con un reflector de neutrones se pierden muchos menos neutrones y se reduce la masa crítica.

La fisión nuclear controlada

Para mantener un control sostenido de reacción nuclear, por cada 2 o 3 neutrones puestos en libertad, sólo a uno se le debe permitir dar a otro núcleo de uranio. Si esta relación es inferior a uno entonces la reacción va a morir, y si es más grande va a crecer sin control (una explosión atómica). Para controlar la cantidad de neutrones libres en el espacio de reacción debe estar presente un elemento de absorción de neutrones. La mayoría de los reactores son controlados por medio de barras de control hechas de neutrones de un fuerte material absorbente, como el boro o el cadmio.

Además de la necesidad de capturar neutrones, los neutrones a menudo tienen mucha energía cinética (se mueven a gran velocidad). Estos neutrones rápidos se reducen a través del uso de un moderador, como el agua pesada y el agua corriente. Algunos reactores utilizan grafito como moderador, pero este diseño tiene varios problemas. Una vez que los neutrones rápidos se han desacelerado, son más propensos a producir más fisiones nucleares o ser absorbidos por las barra de control.

Fisión nuclear espontánea

En este tipo de reacciones no es necesaria la absorción de un neutrón exterior. En determinados isótopos del uranio, y sobretodo del plutonio, tienen una estructura atómica tan inestable que se fissiona espontáneamente.

La tasa de la fisión nuclear espontánea es la probabilidad por segundo que un átomo dado se fisione de forma espontánea - es decir, sin ninguna intervención externa. El plutonio 239 tiene una muy alta tasa de fisión espontánea en comparación con la tasa de fisión espontánea de uranio 235.

2.4 Fusión nuclear

La fusión nuclear es una reacción nuclear en la que dos núcleos de átomos ligeros, en general el hidrógeno y sus isótopos (deuterio y tritio), se unen para formar otro núcleo más pesado. Generalmente esta unión va acompañada con la emisión de partículas (en el caso de núcleos atómicos de deuterio se emite un neutrón). Esta reacción de fusión nuclear libera o absorbe una gran cantidad de energía en forma de rayos gamma y también de energía cinética de las partículas emitidas. Esta gran cantidad de energía permite a la materia entrar en estado de plasma.

Las reacciones de fusión nuclear pueden emitir o absorber energía. Si los núcleos que se van a fusionar tienen menor masa que el hierro se libera energía. Por el contrario, si los núcleos atómicos que se fusionan son más pesados que el hierro la reacción nuclear absorbe energía.

No confundir la fusión nuclear con la fusión del núcleo de un reactor, que se refiere a la fusión del núcleo del reactor de una central nuclear

...

Descargar como (para miembros actualizados) txt (26 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com