ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

FÓRMULA DE MOIVRE


Enviado por   •  6 de Marzo de 2015  •  460 Palabras (2 Páginas)  •  801 Visitas

Página 1 de 2

1.5 TEOREMA DE MOIVRE, POTENCIAS Y EXTRACCION DE RAIZES DE NUMERO COMPLEJO

1.5 TEOREMA DE MOIVRE

FÓRMULA DE MOIVRE

Aplicando la propiedad de la potencia de un número complejo, se obtiene la siguiente fórmula llamada Fórmula de Moivre:

(cos a + i sen a)n = cos na + i sen na

que es útil en trigonometría, pues permite hallar cos na y sen na en función de sen a y cos a.

Esta igualdad recibe el nombre de fórmula de Moivre, en honor del matemático francés Abraham de Moivre (1667-1754).

Potencia

La potencia es un producto de factores iguales, por tanto la regla es la misma que la de multiplicar.

El módulo se eleva a n

El argumento se multiplica por n

Radicación de Números Complejos

La operación de radicación es inversa a la de potenciación

Para un único número complejo zn , existen varios complejos z, que al elevarlos a la potencia n, nos da el mismo complejo zn.

Para hallar las raíces de un número complejo se aplica la fórmula de Moivre, teniendo en cuenta que para que dos complejos coincidan han de tener el mismo módulo y la diferencia de sus argumentos ha de ser un múltiplo entero de 360º.

Sea Ra un número complejo y considérese otro complejo R'a', tal que:

Ra = (R' a' )n = ((R' )n )n a'

Aunque esto parece aportar una infinidad de soluciones, nótese que si a k se le suma un múltiplo de n, al dividir el nuevo argumento, éste aparece incrementado en un número entero de circunferencias. Por tanto, basta con dar a k los valores 1, 2, 3, ..., n-1, lo que da un total de n - 1 raíces, que junto a k = 0 da un total de n raíces.

Raíz Cuadrada

Vamos a hallar :

Primero pasamos z=4+3i a forma polar:

z = 4+3i = 536.9º

La raíz cuadrada de z, tendrá de módulo la raíz cuadrada del módulo de z y de argumento, el de z dividido por 2.

Las dos soluciones de esta raíz cuadrada son:

Si k=0 --> z1=18.4º

Si k=1 --> z2=198.4º

Si le seguimos dando valores a k = 2, 3, 4, ... veremos que las soluciones que salen coinciden con las ya mencionadas, después de haber dado 1, 2, 3, ... vueltas a la circunferencia.

Todas estas operaciones que hemos hecho las puedes ver en la escena, y ver como quedan los vectores, tanto de z como de z1 y z2

Raíz Cúbica

Primero pasamos z = 2+4i a forma polar: z = 2+4i = 4.563.4º

La raíz cúbica de z, tendrá de módulo la raíz cúbica del módulo de z y de argumento, el de z dividido por 3.

Las tres soluciones de esta raíz cúbica son:

Si k=0 --> z1=1.621.1º

Si k=1 --> z2=1.6141.1º

Si k=2 --> z3=1.6261.1º

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com