Grupo metilo
Enviado por luis915 • 13 de Noviembre de 2016 • Ensayo • 2.520 Palabras (11 Páginas) • 205 Visitas
Enthalpy-concentration Diagram
- McCabe Thiele method assumes constant molar flow rate because it considers equal latent heat of vaporization.
- Here we consider varying molar flow rate by solving simultaneous material and energy balances.
- In this case, the operating lines for the enriching and stripping section will be determined from simultaneous solution of mass and energy balance equations.
- To facilitate the solution of the heat balance equation, an enthalpy diagram can be constructed and used.
Enthalpy diagram
The liquid enthalpy
h = x CpA A (T −To ) + (1− xA )CpB (T −To ) + ΔH sol 1
The vapor enthalpy
H = yA[λA +CvA(T −To )]+(1− yA)[λB +CvB (T −To )] 2
Correction for latent heat
λ A = CpA (TbA −To ) + λbA −CvA (TbA −To ) 3
λ B = CpB (TbB −To ) + λbB −CvB (TbB −To ) 4
Where
T is the boiling point for the mixture
TbA The boiling point of pure A TbB The boiling point of pure B To reference temperature
λbA latent heat of pure A at TbA
Example:
Create the enthalpy diagram for Benzene-Toluene mixture
| Tb, C | Cp, kJ/Kgmole K | Cv, kJ/kgmole K | λb kJ/Kgmole |
Benzene | 80.1 | 138.2 | 96.3 | 30820 |
Toluene | 110.6 | 167.5 | 138.2 | 33330 |
Let the reference temperature be 80.1 oC, thus the latent heat of A (Benzene) does not need to be corrected.
For component B:
λ =B 167.5(110.6 −80.1) +33330−138.2(110.6−80.1) = 34224 kJ/kgmole
Create the liquid enthalpy line:
xA = 0, T = 110.6
h = 0 + (1 − 0) (176.5)(110.6 − 80.1) = 5109 kJ/kg mole
xA = 0.3, equilibrium diagram ↱ T = 98 oC
h = 0.3(138.2)(98 ─ 80.1) + (1 − 0.3) (176.5)(98 − 80.1) = 2920 kJ/kg mole
xA = 0.5, equilibrium diagram ↱ T = 92 oC
h = 0.5(138.2)(92 − 80.1) + (1 − 0.5) (176.5)(92 − 80.1) = 1820 kJ/kg mole
xA = 0.8, equilibrium diagram ↱ T = 84 oC
h = 0.8(138.2)(84 − 80.1) + (1 − 0.8) (176.5)(84 − 80.1) = 562 kJ/kg mole
xA = 1.0, equilibrium diagram ↱ T = 80.1 oC
h = 1.0(138.2)(80.1 − 80.1) + 0 = 0 kJ/kg mole
Create the vapor enthalpy line
yA = 0, T = 110.6
H = 0 + (1 − 0) [33330 + 138.2(110.6 − 80.1)] = 38439 kJ/kg mole
yA = 0.3, T =
H = 0.3[30820 + 96.3( T – 80.1)] + (1 − 0.3) [34224 + 138.2(T − 80.1)] = 36268 kJ/kg mole
yA = 0.5, T = 98.8
H = 0.5[30820 + 96.3( 98.8 – 80.1)] + (1 − 0.5) [34224 + 138.2(98.8 − 80.1)] = 34716 kJ/kg mole
yA = 0.8, T =
H = 0.8[30820 + 96.3( T – 80.1)] + (1 − 0.8) [34224 + 138.2(T − 80.1)] = 32380 kJ/kg mole yA = 1.0, T = 80.1
H = 1.0[30820 + 96.3( 80.1 – 80.1)] + 0 = 30820 kJ/kg mole
0.2 0.4 | 0.6 0.8 1.0 |
x |
|
Dx yn+1 = [pic 1]n xn + D Vn+1 Vn+1 | |
Column Design [pic 2][pic 3][pic 4]
Enriching Section
The Mass balance:
Vn+1 = Ln + D 5
The component balance
6
The enthalpy balance: f
Vn+1H n+1 = L hn n + DhD + Qc 7
To eliminate the condenser duty is by heat balance around the condenser:
Qc =V H1 1 − (L + D h) D
Substituting for Qc in equation 7 gives:
| 8 |
Vn+1H n+1 = L hn n +V H1 1 − LhD
Inserting the mass balance equation 5 into equation 9:
| 9 |
Vn H n = (Vn − D h) n +V H − LhD | 10 |
+1 +1 +1 1 1
Stripping section
The Mass balance: [pic 5]
...