ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Grupo metilo


Enviado por   •  13 de Noviembre de 2016  •  Ensayo  •  2.520 Palabras (11 Páginas)  •  205 Visitas

Página 1 de 11

Enthalpy-concentration Diagram

 

  • McCabe Thiele method assumes constant molar flow rate because it considers equal latent heat of vaporization.

 

  • Here we consider varying molar flow rate by solving simultaneous material and energy balances.

 

  • In this case, the operating lines for the enriching and stripping section will be determined from simultaneous solution of mass and energy balance equations.

 

  • To facilitate the solution of the heat balance equation, an enthalpy diagram can be constructed and used.

 

Enthalpy diagram

 

The liquid enthalpy

 

h = x CpA        A (T To ) + (1xA )CpB (T To ) + ΔH sol         1

 

The vapor enthalpy

 

H = yA[λA +CvA(T To )]+(1yA)[λB +CvB (T To )]         2

 

Correction for latent heat

 

λ A = CpA (TbA To ) + λbA CvA (TbA To )         3

         

λ B = CpB (TbB To ) + λbB CvB (TbB To )         4

 

 

Where  

T          is the boiling point for the mixture

TbA         The boiling point of pure A TbB         The boiling point of pure B To         reference temperature

λbA         latent heat of pure A at TbA 

 

 

Example:

Create the enthalpy diagram for Benzene-Toluene mixture

 

 

Tb, C

Cp, kJ/Kgmole K

Cv, kJ/kgmole K

λb kJ/Kgmole

Benzene

80.1

138.2

96.3

30820

Toluene

110.6

167.5

138.2

33330

 

Let the reference temperature be 80.1 oC, thus the latent heat of A (Benzene)  does not need to be corrected.

 

For component B:

 

λ =B        167.5(110.6 80.1) +33330138.2(110.680.1) = 34224   kJ/kgmole

 

Create the liquid enthalpy line:

 

xA = 0,          T = 110.6

 

h = 0 + (1 − 0) (176.5)(110.6 − 80.1) =  5109 kJ/kg mole

 

xA = 0.3,         equilibrium diagram   T = 98 oC

 

h = 0.3(138.2)(98 ─ 80.1) + (1 − 0.3) (176.5)(98 − 80.1) =  2920 kJ/kg mole

 

xA = 0.5,         equilibrium diagram   T = 92 oC

 

h = 0.5(138.2)(92  − 80.1) + (1 − 0.5) (176.5)(92 − 80.1) =  1820 kJ/kg mole

 

xA = 0.8,         equilibrium diagram   T = 84 oC

 

h = 0.8(138.2)(84  − 80.1) + (1 − 0.8) (176.5)(84 − 80.1) =  562 kJ/kg mole

 

xA = 1.0,         equilibrium diagram   T = 80.1 oC

 

h = 1.0(138.2)(80.1  − 80.1) + 0 =  0 kJ/kg mole

 

 

Create the vapor enthalpy line

 

yA = 0,                   T = 110.6

 

H = 0 + (1 − 0) [33330 + 138.2(110.6 − 80.1)]  =  38439 kJ/kg mole

 

yA = 0.3,                  T =  

 

H = 0.3[30820 + 96.3( T – 80.1)] + (1 − 0.3) [34224 + 138.2(T − 80.1)] =  36268 kJ/kg mole

 

 

yA = 0.5,                  T = 98.8

 

H = 0.5[30820 + 96.3( 98.8 – 80.1)] + (1 − 0.5) [34224 + 138.2(98.8 − 80.1)] =  34716 kJ/kg mole

 

 

yA = 0.8,                  T =  

 

H = 0.8[30820 + 96.3( T – 80.1)] + (1 − 0.8) [34224 + 138.2(T − 80.1)] =  32380 kJ/kg mole yA = 1.0,                  T = 80.1

 

H = 1.0[30820 + 96.3( 80.1 – 80.1)] + 0  =  30820 kJ/kg mole

 

 

0.2        0.4

0.6        0.8        1.0

x

 

        Dx

yn+1 = [pic 1]n xn + D

        Vn+1        Vn+1

Column Design [pic 2][pic 3][pic 4]

 

Enriching Section  

 

The Mass balance:

        Vn+1 = Ln + D         5

The component balance

 

6

 

 

The enthalpy balance:         f

 

        Vn+1H n+1 = L hn        n + DhD + Qc         7

 

To eliminate the condenser duty is by heat balance around the condenser:

 

Qc =V H1 1 (L + D h) D 

 

Substituting for Qc in equation 7 gives:

 

8

        Vn+1H n+1 = L hn        n +V H1 1 LhD 

 

Inserting the mass balance equation 5 into equation 9:

 

9

        Vn H n        = (Vn        D h) n +V H LhD 

10

        +1        +1        +1        1 1

 

Stripping section

The Mass balance: [pic 5]

...

Descargar como (para miembros actualizados) txt (9 Kb) pdf (557 Kb) docx (447 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com