Intensidad eléctrica
Israel Rodriguez RodriguezExamen19 de Junio de 2017
329 Palabras (2 Páginas)140 Visitas
Israel Rodríguez Rodríguez segundo parcial cuenta 414012826
La corriente de un alambre se mide con gran precisión como función del tiempo determinar I para T=0.22 usando polinomios de interpolación de cuarto orden de Lagrange y Newton
Interpolación de cuarto orden de Newton
T | f(1) | Primera dif | Segunda dif | Tercera dif | Cuarta dif | |
X0 | 0 | 0 | ||||
10.982752 | ||||||
X1 | 0.125 | 6.2402 | 7.844876 | |||
7.416984 | 7.836260 | |||||
X2 | 0.25 | 7.7886 | 7.825295 | 7.904777 | ||
8.491488 | 7.991980 | |||||
X3 | 0.375 | 4.8599 | 8.204125 | |||
10.886176 | ||||||
X4 | 0.5 | 0 |
Lagrange
L | [pic 1] | L*y |
L0 | [pic 2] | -0.02110976*0=0 |
L1 | [pic 3] | 0.19554304*6.2402 =1.220227678208 |
L2 | [pic 4] | 0.*7.7880[pic 5] =7.234280976384 |
L3 | [pic 6] | -0.11984896*4.8599 =-0.582453960704 |
[pic 7] | 0.01658624*0=0 | |
Resultado 7.872054693888 |
[pic 8]
T | I |
0 | 0 |
0.125 | 6.2402 |
0.25 | 7.7886 |
0.375 | 4.8599 |
0.5 | 0 |
Regresión
1) graficar datos discretos
2) ajustar una línea recta mediante regresión lineal. Agregue esta lista a la grafica
3) encontrar el valor del ancho de carril para una distancia d=7m
[pic 9]y=0.5871x+3.2483
Distancia | carril |
3 | 5 |
8 | 10 |
5 | 7 |
8 | 7.5 |
6 | 7 |
6 | 6 |
10 | 8 |
10 | 9 |
4 | 5 |
5 | 5.5 |
7 | 8 |
x | Y | xy | [pic 10] |
3 | 5 | 15 | 9 |
8 | 10 | 80 | 64 |
5 | 7 | 35 | 25 |
8 | 7.5 | 60 | 64 |
6 | 7 | 42 | 36 |
6 | 6 | 36 | 36 |
10 | 8 | 80 | 100 |
10 | 9 | 90 | 100 |
4 | 5 | 20 | 16 |
5 | 5.5 | 27.5 | 25 |
7 | 8 | 56 | 49 |
72 | 78 | 541.5 | 524 |
6.54545455 | 7.09090909 |
N=12
A1=0.58706897
A0=3.24827586
Y=0.58706897*x+3.24827586
Y=0.58706897 (7)+3.24827586=7.35775865
En ingeniería marítima la ecuación de una ola estacionaria es reflejada en un puerto está dada por la ecuación:
[pic 11]
Teniendo y sustituyendo los valores
=16 t=12 v48 h=0.4[pic 12][pic 13]
0=-0.4[pic 14]
Encontrar el valor positivo más bajo de la variable “x”
[pic 15]
X | f(x) | x2 | f(x)2 |
0 | 0.6 | 4 | 0.61831564 |
0.1 | 0.54409723 | 4.1 | 0.61580171 |
0.2 | 0.49718985 | 4.2 | 0.61191291 |
0.3 | 0.4583562 | 4.3 | 0.60663702 |
0.4 | 0.41414006 | 4.4 | 0.60343566 |
0.5 | 0.37126955 | 4.5 | 0.59954319 |
0.6 | 0.32839903 | 4.6 | 0.59565072 |
0.7 | 0.28552852 | 4.7 | 0.59175826 |
0.8 | 0.242658 | 4.8 | 0.58786579 |
0.9 | 0.19978749 | 4.9 | 0.58397333 |
1 | 0.15691697 | 5 | 0.58008086 |
1.1 | 0.11404646 | 5.1 | 0.57618839 |
1.2 | 0.07117594 | 5.2 | 0.57229593 |
1.3 | 0.02830543 | 5.3 | 0.56840346 |
1.4 | -0.01456509 | 5.4 | 0.564511 |
1.5 | -0.0574356 | 5.5 | 0.56061853 |
1.6 | -0.10030612 | 5.6 | 0.55672606 |
1.7 | -0.14317663 | 5.7 | 0.5528336 |
1.8 | -0.18604715 | 5.8 | 0.54894113 |
1.9 | -0.22891766 | 5.9 | 0.54504867 |
2 | -0.27178818 | 6 | 0.5411562 |
2.1 | -0.31465869 | 6.1 | 0.53726373 |
2.2 | -0.35752921 | 6.2 | 0.53337127 |
2.3 | -0.40039972 | 6.3 | 0.5294788 |
2.4 | -0.44327024 | 6.4 | 0.52558634 |
2.5 | -0.48614075 | 6.5 | 0.52169387 |
2.6 | -0.52901127 | 6.6 | 0.5178014 |
2.7 | -0.57188178 | 6.7 | 0.51390894 |
2.8 | -0.6147523 | 6.8 | 0.51001647 |
2.9 | -0.65762281 | 6.9 | 0.50612401 |
Falsa posición
1.
[pic 16]
X | f(x) |
6.90 | 0.01967 |
6.95452 | 0.000075325 |
7.0 | -0.01640 |
2.
[pic 17]
X | f(x) |
6.95452 | 0.000075325 |
6.95473 | 0.000028120 |
7.0 | -0.01640 |
Es=0.00298
Método de bisección
...