ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Introduccion A La Estadistica


Enviado por   •  8 de Septiembre de 2011  •  5.370 Palabras (22 Páginas)  •  928 Visitas

Página 1 de 22

Unidad IV

El estadístico de prueba

1. Tipos de errores

Cualquiera sea la decisión tomada a partir de una prueba de hipótesis, ya sea de aceptación del Ho o de la Ha, puede incurrirse en error:

 Un error tipo I se presenta si la hipótesis nula Ho es rechazada cuando es verdadera y debía ser aceptada. La probabilidad de cometer un error tipo I se denomina con la letra alfa α

 Un error tipo II, se denota con la letra griega β se presenta si la hipótesis nula es aceptada cuando de hecho es falsa y debía ser rechazada.

2 Procedimiento para la P. de H.

Paso 1: Plantear la hipótesis nula Ho y la hipótesis alternativa H1.

Cualquier investigación estadística implica la existencia de hipótesis o afirmaciones acerca de las poblaciones que se estudian.

La hipótesis nula (Ho) se refiere siempre a un valor especificado del parámetro de población, no a una estadística de muestra. La letra H significa hipótesis y el subíndice cero no hay diferencia. Por lo general hay un "no" en la hipótesis nula que indica que "no hay cambio" Podemos rechazar o aceptar Ho.

La hipótesis nula es una afirmación que no se rechaza a menos que los datos maestrales proporcionen evidencia convincente de que es falsa. El planteamiento de la hipótesis nula siempre contiene un signo de igualdad con respecto al valor especificado del parámetro.

La hipótesis alternativa (H1) es cualquier hipótesis que difiera de la hipótesis nula. Es una afirmación que se acepta si los datos maestrales proporcionan evidencia suficiente de que la hipótesis nula es falsa. Se le conoce también como la hipótesis de investigación. El planteamiento de la hipótesis alternativa nunca contiene un signo de igualdad con respecto al valor especificado del parámetro.

Paso 2: Seleccionar el nivel de significancia.

Nivel de significancia: Probabilidad de rechazar la hipótesis nula cuando es verdadera. Se le denota mediante la letra griega α, también es denominada como nivel de riesgo, este término es más adecuado ya que se corre el riesgo de rechazar la hipótesis nula, cuando en realidad es verdadera. Este nivel esta bajo el control de la persona que realiza la prueba.

Si suponemos que la hipótesis planteada es verdadera, entonces, el nivel de significación indicará la probabilidad de no aceptarla, es decir, estén fuera de área de aceptación. El nivel de confianza (1-α), indica la probabilidad de aceptar la hipótesis planteada, cuando es verdadera en la población.

La distribución de muestreo de la estadística de prueba se divide en dos regiones, una región de rechazo (conocida como región crítica) y una región de no rechazo (aceptación). Si la estadística de prueba cae dentro de la región de aceptación, no se puede rechazar la hipótesis nula.

La región de rechazo puede considerarse como el conjunto de valores de la estadística de prueba que no tienen posibilidad de presentarse si la hipótesis nula es verdadera. Por otro lado, estos valores no son tan improbables de presentarse si la hipótesis nula es falsa. El valor crítico separa la región de no rechazo de la de rechazo.

Tipos de errores

Cualquiera sea la decisión tomada a partir de una prueba de hipótesis, ya sea de aceptación de la Ho o de la Ha, puede incurrirse en error:

Un error tipo I se presenta si la hipótesis nula Ho es rechazada cuando es verdadera y debía ser aceptada. La probabilidad de cometer un error tipo I se denomina con la letra alfa α

Un error tipo II, se denota con la letra griega β se presenta si la hipótesis nula es aceptada cuando de hecho es falsa y debía ser rechazada.

En cualquiera de los dos casos se comete un error al tomar una decisión equivocada.

En la siguiente tabla se muestran las decisiones que pueden tomar el investigador y las consecuencias posibles.

Para que cualquier ensayo de hipótesis sea bueno, debe diseñarse de forma que minimice los errores de decisión. En la práctica un tipo de error puede tener más importancia que el otro, y así se tiene a conseguir poner una limitación al error de mayor importancia. La única forma de reducir ambos tipos de errores es incrementar el tamaño de la muestra, lo cual puede ser o no ser posible.

La probabilidad de cometer un error de tipo II denotada con la letra griega beta β, depende de la diferencia entre los valores supuesto y real del parámetro de la población. Como es más fácil encontrar diferencias grandes, si la diferencia entre la estadística de muestra y el correspondiente parámetro de población es grande, la probabilidad de cometer un error de tipo II, probablemente sea pequeña.

El estudio y las conclusiones que obtengamos para una población cualquiera, se habrán apoyado exclusivamente en el análisis de una parte de ésta. De la probabilidad con la que estemos dispuestos a asumir estos errores, dependerá, por ejemplo, el tamaño de la muestra requerida. Las contrastaciones se apoyan en que los datos de partida siguen una distribución normal

Existe una relación inversa entre la magnitud de los errores α y β: conforme a aumenta, β disminuye. Esto obliga a establecer con cuidado el valor de a para las pruebas estadísticas. Lo ideal sería establecer α y β. En la práctica se establece el nivel α y para disminuir el Error β se incrementa el número de observaciones en la muestra, pues así se acortan los limites de confianza respecto a la hipótesis planteada. La meta de las pruebas estadísticas es rechazar la hipótesis planteada. En otras palabras, es deseable aumentar cuando ésta es verdadera, o sea, incrementar lo que se llama poder de la prueba (1- β) La aceptación de la hipótesis planteada debe interpretarse como que la información aleatoria de la muestra disponible no permite detectar la falsedad de esta hipótesis.

Paso 3: Cálculo del valor estadístico de prueba

Valor determinado a partir de la información muestral, que se utiliza para determinar si se rechaza la hipótesis nula., existen muchos estadísticos de prueba para nuestro caso utilizaremos los estadísticos z y t. La elección de uno de estos depende de la cantidad de muestras que se toman, si las muestras son de la prueba son iguales a 30 o más se utiliza el estadístico z, en caso contrario se utiliza el estadístico t.

3. P de H para medias  conocida.

Análisis estadístico

Supóngase que la variable aleatoria X representa algún proceso o población de interés. Suponemos que la distribución

...

Descargar como (para miembros actualizados) txt (30 Kb)
Leer 21 páginas más »
Disponible sólo en Clubensayos.com