ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Introducción a la Integración


Enviado por   •  29 de Noviembre de 2013  •  Examen  •  557 Palabras (3 Páginas)  •  251 Visitas

Página 1 de 3

ntroducción a la Integración

La integración es un método para la obtención deuna función o un valor cuyo diferencial sea equivalente a la misma función.

Esto significa que si la función dada es f(x), mediante integrarla obtendríamos g(x).

Ahora bien, si g ‘(x) es el diferencial de la función g(x) entonces g’ (x) y f (x) son la misma función en sí.

El proceso de integración es el inverso de la diferenciación.

El símbolo se utiliza para denotar la función de integración.

Sea f(x) el coeficiente diferencial de una función F(x) con respecto a x entonces,

O,

Tomando la sumatoria de todas las diferenciales obtenemos,

dy = f(x) dx = d [F(x)]

O,

y = f(x) dx = F(x)

Cuando dx tiende hacia cero, la sumatoria es sustituida con la integral. Entonces, y = f(x) dx = F(x)

Aquí f(x) dx es leída como la integral def(x) dx. En la ecuación anterior, f(x) es llamada integrando y F(x) es llamada la integral o función primitiva de f(x).

Además la integración de f(x) con respecto a x es F(x).

Es importante tener en cuenta que el signo se utiliza para la sumatoria de valores discretos, mientras que se utiliza para la sumatoria de funciones continuas.

Esto significa que el método de integración se utiliza para sumar el efecto de una función que varía continuamente, por ejemplo, el trabajo hecho en contra de una fuerza variable.

Es de notar que el álgebra ordinaria no proporciona algún método para sumar el efecto de una función que varíe.

La integración es de dostipos, integración indefinida e la integración definida.

Cuando una función es integrada dentro de los límites definidos, la integral se denomina integral definida.

Por ejemplo, .

f(x) dx es la integral definida de f(x) entre los límites a y b y es escrita como,

f(x) dx = F(x) = F(b) – F(a)

Aquí a se llamalímite inferior y b se llama límite superior de integración.

Si una función está dada por y = + C, donde C es una constante de integración entonces, dy/ dx = d(5×5 + C)/ dx = 25×4 + 0 = 25×4

Como la integración es el proceso inverso de la diferenciación, por tanto 25×4 dx = 5×5.

Esto significa que durante la integración la constante no aparece.

Esto es debido al hecho de que el coeficiente diferencial de una constante es cero.

Por tanto, no podemos decir con certeza si es 25×4 dx = 5×5 o 5×5 + C.

Dicha integración se conoce como integración indefinida. Por consiguiente en todas las integrales indefinidas, se supone que está presenteuna constante de integración C, si la condición

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com