Ley De Gravitación Universal
Enviado por karturo.17 • 17 de Septiembre de 2014 • 3.261 Palabras (14 Páginas) • 210 Visitas
Pr´actica 7
Ley de Gravitaci´on Universal de
Newton
7.1. Introducci´on
En esta pr´actica damos al alumno un gui´on y una relaci´on de referencias para que con su trabajo personal, que estimamos de 10 horas, realice un pequen˜o estudio e investigaci´on que le permita dominar los fundamentos b´asicos de la Ley de Gravitacion Universal.
Es muy recomendable que el alumno estudie y haga los ejemplos de aplicaci´on que se dan en esta pr´actica porque ser´an objeto de examen en el control asociado a esta pr´actica. Con la asimilaci´on correcta de los contenidos escritos que aqu´ı se exponen queda garantizada, al menos, la superaci´on del 80 % de los contenidos del control.
Se aconseja al alumno que utilice ([EP], secciones 5.1 y 6.4) y ([Gu], cap´ıtulo 1) como referencias bibliogr´aficas de apoyo a lo aqu´ı expuesto.
7.2. Leyes de Kepler y de Gravitacion
De acuerdo con la ley de gravitacion de Newton un sat´elite de masa mS se encuentra atra´ıdo hacia la Tierra con una fuerza FS cuya magnitud es directamente proporcional al producto de las masas de la Tierra, mT , y del sat´elite e inversamente proporcional cuadrado de la distancia entre ellos:
FS = G
mT • mS
|r|2
r
• |r|
y , an´alogamente, FT = G
mT • mS
|r|2
−r
• |r|
(7.1)
donde G es la constante de gravitacion y r = pT − pS el vector diferencia entre la posici´on de la Tierra, pT = (xT (t), yT (t), zT (t)), y la posici´on del sat´elite, pS = (xS (t), yS (t), zT (t)) . En consecuencia, se verifica
(ES ) : mS p00 = G
mT mS r
+ mS gS ; (ET ) : mT p00
= G mT mS −r
+ mT gT (7.2)
|r|2
|r|
|r|2
|r|
para gS , gT las aceleraciones a las que se ven sometidas la Tierra y el sat´elite por acci´on de la atracci´on del resto del Universo. Podemos suponer que gS = gT = gU ya que la distancia
53
Tierra–sat´elite la consideramos insignificante frente a las distancias de la Tierra y cualquier objeto celeste distinto de sus sat´elites. De las dos igualdades anteriores se obtiene:
1. Si denotamos por M = mT + mS la masa del sistema Tierra–sat´elite, la ecuaci´on
(ES ) + (ET ) nos dice que la posici´on pC = 1 (mS pS + mT pT ) del centro de masas
Tierra–sat´elite verifica p00
= gU de lo que se deduce que la acci´on de atracci´on del
Universo sobre el sistema Tierra–sat´elite recae sobre el centro de masas pC .
2. La igualdad mS • (ET ) − mT • (ES ) toma la expresi´on:
y tambi´en
mT mS r00 = −G
mT mS (mT + mS )
|r|3
G • M
r (7.3)
X 00(t) = −
(X 2(t) + Y 2(t) + Z (t)2)3/2
G • M
X (t)
Y 00(t) = −
(X 2
(t) + Y
2(t) + Z (t)2)
3/2 Y (t)
(7.4)
Z 00(t) = G • M Z (t)
(X 2(t) + Y 2(t) + Z (t)2)3/2
para X = xS − xT , Y = yS − yT y Z = zS − zT .
3. La ´orbita de cualquier sat´elite queda determinada completamente sabiendo dos datos, a saber: la posici´on y la velocidad inicial. Esto se deduce de que el anterior sistema de ecuaciones diferenciales es de orden dos.
La soluci´on exacta del sistema de ecuaciones diferenciales anterior es bien conocida, ver la secci´on 5.1 de [EP]: En las coordenadas polares (ρ, α) asociadas al plano orbital que contiene a ambos planetas y centradas en uno de ellos, se verifica:
4v2/(G • M )
ρ(α) =
a
1 + ² cos(α + α0)
(7.5)
Mejor conocida au´n que esta ecuaci´on resultan las leyes f´ısicas que describen el movi- miento y que son conocidas como las Leyes de Kepler y que afirman, que respecto al sistema de referencia centrado en la Tierra (en realidad fueron enunciadas para el Sol y los planetas) se verifica:
Primera ley de Kepler: La ´orbita que describe un sat´elite es una c´onica de excentricidad
² y la Tierra uno de sus focos.
Segunda ley de Kepler: La velocidad areolar del movimiento del sat´elite, va , es constante.
Tercera ley de Kepler: El cuadrado del periodo de circunvalaci´on del sat´elite es propor- cional al cubo del semieje mayor de su ´orbita. Para ser m´as precisos, se verifica:
T 2 = 4π
D3 (7.6)
G • M
7.3. ENUNCIADOS DE LAS PRA´ CTICAS 55
7.3. Enunciados de las pr´acticas
Pr´actica A Calcular el valor de la constante de gravitacion universal para las siguientes uni- dades de medida: como unidad de masa, U M , utilizamos la masa del Sol; como unidad de distancia; U A (en ingl´es AU ), la unidad astron´omica, es decir, la longitud del semi- eje mayor de circunvalaci´on de la Tierra alrededor del Sol, U A = 149 597 870.66 [[km]]; y, como unidad de tiempo, U T , el an˜o, U T = 365.242199074 [[d´ıas]].
Pr´actica B Calcular el valor de la constante de gravitacion universal para las siguientes unidades de medida: como unidad de masa, um, utilizamos la suma de la masa de la Tierra y de la Luna; como unidad de distancia, ud, la longitud del semieje mayor de la
´orbita de la Luna alrededor de la Tierra, ud = 384 400 [[km]]; y, como unidad de tiempo,
ut, el periodo de revoluci´on de la Luna alrededor de la Tierra, ut = 27.322 [[d´ıas]].
Pr´actica puntuable C A partir del experimento de Cavendish se sabe que la constante de gravitacion universal tiene el valor G = 6.673 • 10−11 [[m3s-2kg-1 ]]. Con las notaciones de las dos
...