Los teoremas se numeran consecutivamente para facilitar una futura referencia
Enviado por GreenArrow • 29 de Agosto de 2011 • Informe • 578 Palabras (3 Páginas) • 1.054 Visitas
Para facilitar la obtención del límite de una función sin tener que recurrir cada vez a la definición Epsilón-Delta se establecen los siguientes teoremas.
Los teoremas se numeran consecutivamente para facilitar una futura referencia.
Nota: los teoremas se presentan sin demostración, pero quien quiera verla puede hacer clic en el vínculo correspondiente.
Teorema de límite1:
Si k es una constante y a un número cualquiera, entonces
Teorema de límite2:
Para cualquier número dado a,
Teorema de límite3:
Si m y b son dos constantes cualesquiera, entonces
Teorema de límite4:
Teorema de límite5:
Teorema de límite6:
Si f es un polinomio y a es un número real, entonces
Teorema de límite7:
Si q es una función racional y a pertenece al dominio de q, entonces
Teorema de límite8:
Procedimiento para calcular límites
Si es posible aplicar directamente las propiedades anteriores, el límite se calcula directamente. Con respecto a las propiedades, como la propiedad 6 se aplica a cualquier polinomio y las propiedades 1, 2, 3, y 4 implican funciones polinómicas es indistinto que nos refiramos a cada una de las propiedades 1 a 4 en particular que a la propiedad 6 cuando calculamos el límite de una función polinómica. Lo mismo, la propiedad 7 se aplica a una función racional y la propiedad 4 (III) también.
Cuando al sustituir la a por x en la función nos da la forma indeterminada 0/0 es posible calcular el límite pero, previamente, hay que transformar la fórmula de la función de tal modo que, una vez hecha la simplificación pertinente, se pueda evitar la división por cero: para lograr esto disponemos de procedimientos algebraicos eficaces como la factorización, la conjugada, etc.
Ejercicios resueltos
Evalué los siguientes límites indicando la propiedad o propiedades que se aplican en cada paso:
S o l u c i o n e s
1. Solución
2. Solución:
3. Solución:
4. Solución:
5. Solución:
6. Solución:
No es posible aplicar directamente el TL7, pues se obtendría la forma indeterminada 0/0; no obstante, luego de factorizar y simplificar la expresión, se obtiene fácilmente el límite aplicando el TL1:
7. Solución:
No es posible aplicar directamente
...