Matematica
Enviado por robins824 • 23 de Diciembre de 2011 • 2.821 Palabras (12 Páginas) • 649 Visitas
MatemáticasDe Wikipedia, la enciclopedia libre
(Redirigido desde Matematica)
Saltar a: navegación, búsqueda
Euclides, matemático griego, del siglo III a. C., tal como fue imaginado por Rafael. Detalle de La Escuela de Atenas.[1]Las matemáticas o la matemática (del lat. mathematĭca, y este del gr. μαθηματικά, derivado de μάθημα, conocimiento) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entes abstractos (números, figuras geométricas, símbolos). Las matemáticas se emplean para estudiar relaciones cuantitativas, estructuras, relaciones geométricas y los mangitudes variables. Los matemáticos buscan patrones,[2] [3] formulan nuevas conjeturas e intentan alcanzar la verdad matemática mediante rigurosas deducciones. Éstas les permiten establecer los axiomas y las definiciones apropiados para dicho fin.[4] Algunas definiciones clásicas restringen las matemáticas al razonamiento sobre cantidades,[5] aunque sólo una parte de las matemáticas actuales usan números, predominando el análisis lógicos de construcciones abstractas no cuantitativas.
Existe cierto debate acerca de si los objetos matemáticos, como los números y puntos, realmente existen o si provienen de la imaginación humana. El matemático Benjamin Peirce definió las matemáticas como "la ciencia que señala las conclusiones necesarias".[6] Por otro lado, Albert Einstein declaró que "cuando las leyes de la matemática se refieren a la realidad, no son exactas ; cuando son exactas, no se refieren a la realidad".[7]
Mediante la abstracción y el uso de la lógica en el razonamiento, las matemáticas han evolucionado basándose en las cuentas, el cálculo y las mediciones, junto con el estudio sistemático de la forma y el movimiento de los objetos físicos. Las matemáticas, desde sus comienzos, han tenido un fin práctico .
Las explicaciones que se apoyaban en la lógica aparecieron por primera vez con la matemática helénica, especialmente con los Elementos de Euclides. Las matemáticas siguieron desarrollándose, con continuas interrupciones, hasta que en el Renacimiento las innovaciones matemáticas interactuaron con los nuevos descubrimientos científicos. Como consecuencia, hubo una aceleración en la investigación que continúa hasta la actualidad.
Hoy en día, las matemáticas se usan en todo el mundo como una herramienta esencial en muchos campos, entre los que se encuentran las ciencias naturales, la ingeniería, la medicina y las ciencias sociales, e incluso disciplinas que, aparentemente, no están vinculadas con ella, como la música (por ejemplo, en cuestiones de resonancia armónica). Las matemáticas aplicadas, rama de las matemáticas destinada a la aplicación de los conocimientos matemáticos a otros ámbitos, inspiran y hacen uso de los nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de nuevas disciplinas. Los matemáticos también participan en las matemáticas puras, sin tener en cuenta la aplicación de esta ciencia, aunque las aplicaciones prácticas de las matemáticas puras suelen ser descubiertas con el paso del tiempo.[8]
Contenido [ocultar]
1 Etimología
2 La inspiración, las matemáticas puras y aplicadas y la estética
3 Notación, lenguaje y rigor
4 La matemática como ciencia
5 Ramas de estudio de las matemáticas
6 Conceptos erróneos
7 Véase también
8 Referencias
9 Bibliografía
10 Enlaces externos
[editar] EtimologíaLa palabra "matemática" (del griego μαθηματικά, «lo que se aprende») viene del griego antiguo μάθημα (máthēma), que quiere decir «campo de estudio o instrucción». El significado se contrapone a μουσική (musiké) «lo que se puede entender sin haber sido instruido», que refiere a poesía, retórica y campos similares, mientras que μαθηματική se refiere a las áreas del conocimiento que sólo pueden entenderse tras haber sido instruido en las mismas (astronomía, aritmética).[9] Aunque el término ya era usado por los pitagóricos en el siglo VI a. C., alcanzó su significado más técnico y reducido de "estudio matemático" en los tiempos de Aristóteles (siglo IV a. C.). Su adjetivo es μαθηματικός (mathēmatikós), "relacionado con el aprendizaje", lo cual, de manera similar, vino a significar "matemático". En particular, μαθηματική τέχνη (mathēmatikḗ tékhnē; en latín ars mathematica), significa "el arte matemática".
La forma plural matemáticas viene de la forma latina mathematica (Cicerón), basada en el plural en griego τα μαθηματικά (ta mathēmatiká), usada por Aristóteles y que significa, a grandes rasgos, "todas las cosas matemáticas".
[editar] La inspiración, las matemáticas puras y aplicadas y la estéticaArtículo principal: Belleza matemática
Sir Isaac Newton (1643-1727), comparte con Leibniz la autoría del desarrollo del cálculo integral y diferencial.Las matemáticas surgen cuando hay problemas difíciles en los que intervienen la cantidad, la estructura, el espacio y el cambio de los objetos. Al principio, las matemáticas se encontraban en el comercio, en la medición de los terrenos y, posteriormente, en la astronomía. Actualmente, todas las ciencias aportan problemas que son estudiados por matemáticos, al mismo tiempo que aparecen nuevos problemas dentro de las propias matemáticas. Por ejemplo, el físico Richard Feynman inventó la integral de caminos de la mecánica cuántica, combinando el razonamiento matemático y el enfoque de la física. Hoy la teoría de las cuerdas, una teoría científica en desarrollo que trata de unificar las cuatro fuerzas fundamentales de la física, sigue inspirando a las más modernas matemáticas.[10] Algunas matemáticas solo son relevantes en el área en la que estaban inspiradas y son aplicadas para otros problemas en ese campo. Sin embargo, a menudo las matemáticas inspiradas en un área concreta resultan útiles en muchos ámbitos, y se incluyen dentro de los conceptos matemáticos generales aceptados. El notable hecho de que incluso la matemática más pura habitualmente tiene aplicaciones prácticas es lo que Eugene Wigner ha definido como la irrazonable eficacia de las matemáticas en las Ciencias Naturales.[11]
Como en la mayoría de las áreas de estudio, la explosión de los conocimientos en la era científica ha llevado a la especialización de las matemáticas. Hay una importante distinción entre las matemáticas puras y las matemáticas aplicadas. La mayoría de los
...