ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Metodo De Aproximacion De Vogel


Enviado por   •  23 de Mayo de 2012  •  791 Palabras (4 Páginas)  •  1.906 Visitas

Página 1 de 4

MÉTODO DE APROXIMACIÓN DE VOGEL

El método de aproximación de Vogel es un método heurístico de resolución de problemas de transporte capaz de alcanzar una solución básica no artificial de inicio, este modelo requiere de la realización de un número generalmente mayor de iteraciones que los demás métodos heurísticos existentes con este fin, sin embargo produce mejores resultados iniciales que los mismos.

ALGORITMO DE RESOLUCIÓN DE VOGEL

El método consiste en la realización de un algoritmo que consta de 3 pasos fundamentales y 1 más que asegura el ciclo hasta la culminación del método.

PASO 1

Determinar para cada fila y columna una medida de penalización restando los dos costos menores en filas y columnas.

PASO 2

Escoger la fila o columna con la mayor penalización, es decir que de la resta realizada en el "Paso 1" se debe escoger el número mayor. En caso de haber empate, se debe escoger arbitrariamente (a juicio personal).

PASO 3

De la fila o columna de mayor penalización determinada en el paso anterior debemos de escoger la celda con el menor costo, y en esta asignar la mayor cantidad posible de unidades. Una vez se realiza este paso una oferta o demanda quedará satisfecha por ende se tachará la fila o columna, en caso de empate solo se tachará 1, la restante quedará con oferta o demanda igual a cero (0).

PASO 4: DE CICLO Y EXCEPCIONES

- Si queda sin tachar exactamente una fila o columna con cero oferta o demanda, detenerse.

- Si queda sin tachar una fila o columna con oferta o demanda positiva, determine las variables básicas en la fila o columna con el método de costos mínimos, detenerse.

- Si todas las filas y columnas que no se tacharon tienen cero oferta y demanda, determine las variables básicas cero por el método del costo mínimo, detenerse.

- Si no se presenta ninguno de los casos anteriores vuelva al paso 1 hasta que las ofertas y las demandas se hayan agotado.

EJEMPLO DEL MÉTODO DE APROXIMACIÓN DE VOGEL

Por medio de este método resolveremos el ejercicio de transporte resuelto en módulos anteriores mediante programación lineal.

EL PROBLEMA

Una empresa energética colombiana dispone de cuatro plantas de generación para satisfacer la demanda diaria eléctrica en cuatro ciudades, Cali, Bogotá, Medellín y Barranquilla. Las plantas 1,2,3 y 4 pueden satisfacer 80, 30, 60 y 45 millones de KW al día respectivamente. Las necesidades de las ciudades de Cali, Bogotá, Medellín y Barranquilla son de 70, 40, 70 y 35 millones de Kw al día respectivamente.

Los costos asociados al envío de suministro energético por cada millón de KW entre cada planta y cada ciudad son los registrados en la siguiente tabla.

Bryan Antonio Salazar López

Formule un modelo de programación

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com