Movimiento Oscilatorio
Enviado por rsdeivid • 2 de Diciembre de 2014 • 1.069 Palabras (5 Páginas) • 424 Visitas
Oscilación libre
En el caso en que un sistema reciba una única fuerza y oscile libremente hasta detenerse por causa de la amortiguación, recibe el nombre de oscilación libre. Éste es por ejemplo el caso cuando pulsamos la cuerda de una guitarra.
FIGURA 01: Oscilación libre. La envolvente dinámica muestra fases de ataque y caída
Oscilación amortiguada
Si en el caso de una oscilación libre nada perturbara al sistema en oscilación, éste seguiría vibrando indefinidamente. En la naturaleza existe lo que se conoce como fuerza de fricción (o rozamiento), que es el producto del choque de las partículas (moléculas) y la consecuente transformación de determinadas cantidades de energía en calor. Ello resta cada vez más energía al movimiento (el sistema oscilando), produciendo finalmente que el movimiento se detenga. Esto es lo que se conoce como oscilación amortiguada.
FIGURA 02: Oscilación amortiguada
En la oscilación amortiguada la amplitud de la misma varía en el tiempo (según una curva exponencial), haciéndose cada vez más pequeña hasta llegar a cero. Es decir, el sistema (la partícula, el péndulo, la cuerda de la guitarra) se detiene finalmente en su posición de reposo.
La representación matemática es , donde es el coeficiente de amortiguación. Notemos que la amplitud es también una función del tiempo (es decir, varía con el tiempo), mientras que a y son constantes que dependen de las condiciones de inicio del movimiento.
No obstante, la frecuencia de oscilación del sistema (que depende de propiedades intrínsecas del sistema, es decir, es característica del sistema) no varía (se mantiene constante) a lo largo de todo el proceso. (Salvo que se estuviera ante una amortiguación muy grande.)
Oscilación autosostenida
Si logramos continuar introduciendo energía al sistema, reponiendo la que se pierde debido a la amortiguación, logramos lo que se llama una oscilación autosostenida. Éste es por ejemplo el caso cuando en un violín frotamos la cuerda con el arco, o cuando soplamos sostenidamente una flauta.
FIGURA 03: Oscilación autosostenida. La envolvente dinámica presenta una fase casi estacionaria (FCE), además de las fases de ataque y caída
La acción del arco sobre la cuerda repone la energía perdida debido a la amortiguación, logrando una fase (o estado) casi estacionaria. Preferimos llamarla fase casi estacionaria -y no estado estacionario, como suele encontrarse en alguna literatura- debido a que, en condiciones prácticas, resulta sumamente difícil que la energía que se introduce al sistema sea exactamente igual a la que se pierde producto de la amortiguación. En consecuencia, la amplitud durante la fase casi estacionaria no es en rigor constante, sino que sufre pequeñas variaciones, cuya magnitud dependerá de nuestra habilidad para compensar la energía perdida.
Si la energía que se repone al sistema en oscilación es menor a la que se pierde producto de la fricción obtenemos una oscilación con amortiguación menor, cuyas características dependen de la relación existente entre la energía perdida y la que se continúa introduciendo. También en este caso el sistema termina por detenerse, aunque demore más tiempo. (En música lo llamaríamos decrescendo.)
Por el contrario, si la energía que introducimos al sistema es mayor que la que se pierde por la acción de la fricción, la amplitud de la oscilación
...