ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Optica.


Enviado por   •  16 de Mayo de 2013  •  Examen  •  2.203 Palabras (9 Páginas)  •  305 Visitas

Página 1 de 9

OPTICA

En la Edad Antigua se conocía la propagación rectilínea de la luz y la reflexión y refracción. Dos filósofos y matemáticos griegos escribieron tratados sobre óptica: Empédocles y Euclides.

Ya en la Edad Moderna René Descartes consideraba la luz como una onda de presión transmitida a través de un medio elástico perfecto (el éter) que llenaba el espacio. Atribuyó los diferentes colores a movimientos rotatorios de diferentes velocidades de las partículas en el medio.

La ley de la refracción fue descubierta experimentalmente en 1621 por Willebrord Snell. En 1657 Pierre de Fermat anunció el principio del tiempo mínimo y a partir de él dedujo la ley de la refracción. George Hatsian es el rey de óptico.

Ley de Snell

En la refracción el rayo de luz que se atraviesa de un medio transparente a otro, se denomina rayo incidente; el rayo de luz que se desvía al ingresar al segundo medio transpartente se denomina rayo refractado; el ángulo en que el rayo incidente, al ingresar al segundo medio, forma con la perpendicular al mismo, se denomina ángulo de incidencia; el ángulo que el rayo incidente forma con el rayo refractado, al desviarse, se denomina ángulo de refracción

LEYES FUNDAMENTALES

En física, la óptica geométrica parte de las leyes fenomenológicas de Snell (o Descartes según otras fuentes) de la reflexión y la refracción. A partir de ellas, basta hacer geometría con los rayos luminosos para la obtención de las fórmulas que corresponden a los espejos, dioptrio y lentes (o sus combinaciones), obteniendo así las leyes que gobiernan los instrumentos ópticos a que estamos acostumbrados.

La óptica geométrica usa la noción de rayo luminoso; es una aproximación del comportamiento que corresponde a las ondas electromagnéticas (la luz) cuando los objetos involucrados son de tamaño mucho mayor que la longitud de onda usada; ello permite despreciar los efectos derivados de la difracción, comportamiento ligado a la naturaleza ondulatoria de la luz.

Esta aproximación es llamada de la Eikonal y permite derivar la óptica geométrica a partir de las ecuaciones de Maxwell.

Ley de Snell.

El índice de refracción "n" de un medio viene dado por la siguiente expresión, donde v es la velocidad de la luz en ese medio, y "c" la velocidad de la luz en el vacío:

Ya que la velocidad de la luz en los materiales depende del índice de refracción, y el índice de refracción depende de la frecuencia de la luz, la luz a diferentes frecuencias viaja a diferentes velocidades a través del mismo material. Esto puede causar distorsión de ondas electromagnéticas que consisten de múltiples frecuencias, llamada dispersión.

Los ángulos de incidencia (i) y de refracción (r) entre dos medios y los índices de refracción están relacionados por la Ley de Snell. Los ángulos se miden con respecto al vector normal a la superficie entre los medios:

Óptica ondulatoria: se ocupa de los fenómenos de difracción, interferencia y polarización, que pueden explicarse admitiendo la naturaleza ondulatoria de la luz. Supone que la luz se propaga según ondas transversales. Los rayos luminosos son las trayectorias perpendiculares a la superficie de la onda.

LA DIFRACCIÓN de la luz puso a pensar a muchos científicos, incluyendo a Grimaldi, su propio descubridor. La hipótesis de los rayos rectos luminosos enfrenta, ciertamente, serios problemas lógicos para explicar este fenómeno. ¿Cómo le dan la vuelta los rayos a los filos de la ranura e invaden la sombra geométrica? Éste es sólo uno de los principales interrogantes que se plantean.

USOS:

Los investigadores en la física óptica utilizan y desarrollan fuentes de luz que abarcan todo el espectro electromagnético desde las microondas hasta los rayos X. El campo incluye la generación y detección de la luz, procesos lineales y no lineales, y la espectroscopia. Los láser y el la espectroscopía láser han transformado la ciencia óptica. Un importante campo de estudio de la física óptica es la óptica cuántica y la luz coherente, y la óptica de los femtosegundos

• Se puede usar como una guía de onda en aplicaciones médicas o industriales en las que es necesario guiar un haz de luz hasta un blanco que no se encuentra en la línea de visión.

• La fibra óptica se puede emplear como sensor para medir tensiones, temperatura, presión así como otros parámetros.

• Es posible usar latiguillos de fibra junto con lentes para fabricar instrumentos de visualización largos y delgados llamados endoscopios. Los endoscopios se usan en medicina para visualizar objetos a través de un agujero pequeño. Los endoscopios industriales se usan para propósitos similares, como por ejemplo, para inspeccionar el interior de turbinas.

• Las fibras ópticas se han empleado también para usos decorativos incluyendo iluminación, árboles de Navidad.

• Líneas de abonado

• Las fibras ópticas son muy usadas en el campo de la iluminación. Para edificios donde la luz puede ser recogida en la azotea y ser llevada mediante fibra óptica a cualquier parte del edificio.

ILUMINACION

La iluminación es la acción o efecto de iluminar. En la técnica se refiere al conjunto de dispositivos que se instalan para producir ciertos efectos luminosos, tanto prácticos como decorativos. Con la iluminación se pretende, en primer lugar, conseguir un nivel de iluminación - interior o exterior - , o iluminancia, adecuado al uso que se quiere dar al espacio iluminado, nivel que dependerá de la tarea que los usuarios hayan de realizar.

Existen tres elementos que condicionan la iluminación fílmica:

1. El movimiento de los actores y objetos delante de la cámara.

2. La sucesión de un plano a otro y la continuidad de luz entre ambos.

3. La rapidez de sucesión de los planos.

Un dato relevante del ojo humano para la iluminación y el trabajo, es la distancia de visión natural, en la que el ojo no necesita deformarse para acomodarse la distancia de visión, es una distancia entre el ojo y el detalle a ver de 250 mm.

Deducción de la ley inversa para ondas

La ley de la inversa del cuadrado para la intensidad de una onda sonora lumínica o de otro tipo puede ser deducida rigurosamente a partir de la ecuación de onda (1) y la definición de intensidad (2), tal como sigue. Se parte de las siguientes ecuaciones:

(1)

(2)

Para una onda esférica emitida por una fuente puntual, Ψ sólo depende de la distancia r al centro de emisión y por tanto escribiendo el operador laplaciano que aparece en la ecuación de onda (1) en coordenadas esféricas para Ψ = Ψ(r,t) se tiene:

(1')

La solución de la ecuación de

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com