Potencial Eléctrico. Fisica
Enviado por jrsnjhn • 27 de Mayo de 2013 • 1.549 Palabras (7 Páginas) • 703 Visitas
Potencial Eléctrico
POTENCIAL ELECTRICO
Un campo eléctrico que rodea a una barra cargada puede describirse no solo por una intensidad de campo eléctrico E (Cantidad Vectorial) si no también como una cantidad escalar llamada “Potencial Eléctrico”.
Diferencia de Potencial eléctrico
Considérese una carga de prueba positiva en presencia de un campo eléctrico y que se traslada desde el punto A al punto B conservándose siempre en equilibrio. Si se mide el trabajo que debe hacer el agente que mueve la carga, la diferencia de potencial eléctrico se define como:
El trabajo puede ser positivo, negativo o nulo. En estos casos el potencial eléctrico en B será respectivamente mayor, menor o igual que el potencial eléctrico en A. La unidad en el SI para la diferencia de potencial que se deduce de la ecuación anterior es Joule/Coulomb y se representa mediante una nueva unidad, el voltio, esto es:
1 voltio = 1 Joule/Coulomb.
El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica (ley de Coulomb) para mover una carga positiva "q" desde el infinito (donde el potencial es cero) hasta ese punto. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria "q" desde el infinito hasta el punto considerado en contra de la fuerza eléctrica. Matemáticamente se expresa por:
oBqWBV∞=
=∞BWTrabajo realizado por un agente externo para mover la carga de prueba qo del infinito hasta el punto B.
VB = Potencial en el punto B
E
Tanto el trabajo WAB como la Diferencia de Potencial son independientes de la trayectoria a mover qo.
RELACION ENTRE POTENCIAL ELECTRICO Y CAMPO ELECTRICO
Sean A y B dos puntos situados en un campo eléctrico uniforme, estando A a una distancia d de B en la dirección del campo, tal como muestra la figura.
Ing. Magno Cuba Atahua
Potencial Eléctrico
Una carga de prueba q se mueve de A hacia B en un campo eléctrico uniforme E mediante un agente exterior que ejerce sobre ella una fuerza F.
Considérese una carga de prueba positiva q moviéndose sin aceleración, por efecto de algún agente externo, siguiendo la recta que une A con B.
La fuerza eléctrica sobre la carga será qE y apunta hacia abajo. Para mover la carga en la forma descrita arriba, se debe contrarrestar esa fuerza aplicando una fuerza externa F de la misma magnitud pero dirigida hacia arriba. El trabajo realizado por el agente que proporciona esta fuerza es: ∫∫==BABAABFdlldFWθcos..
pero : 0=θ
∫∫===BABAABFddlFFdlW
pero : F = E qo
Teniendo en cuenta que:
Sustituyendo se obtiene:
EdVVAB=−
Esta ecuación muestra la relación entre la diferencia de potencial y la intensidad de campo en un caso sencillo especial.
El punto B tiene un potencial más elevado que el A. Esto es razonable porque un agente exterior tendría que hacer trabajo positivo para mover la carga de prueba de A hacia B.
Ing. Magno Cuba Atahua
Potencial Eléctrico
CASO GENERAL:
Donde el Campo eléctrico no es uniforme y que la trayectoria por donde se mueve la carga de prueba qo no es rectilínea
La carga qo experimenta una fuerza Eqo, luego para que la carga de prueba no acelere debe aplicarse una fuerza exterior F igual en magnitud a –Eqo para todas las posiciones de la carga de prueba.
∫∫−==ldEqldFWoAB..
Entonces:
Si el punto A se encuentra a una distancia infinita (∞) entonces VA = 0 ; luego : ∫−=−ldEVVAB.
∫−=ldEVB.
POTENCIAL DEBIDO A UNA CARGA PUNTUAL.
Una carga de prueba q, se mueve, mediante un agente exterior de A hasta B en el campo producido por una carga
Considérense los puntos A y B y una carga puntual q tal como muestra la figura. Según se muestra, apunta a la derecha y , que siempre está en la dirección del movimiento, apunta a la izquierda. Por consiguiente:
Ahora bien, al moverse la carga una trayectoria dl hacia la izquierda, lo hace en la dirección de la r decreciente porque r se mide a partir de q como origen. Así pues:
Ing. Magno Cuba Atahua
Potencial Eléctrico
Por lo cual:
Combinando esta expresión con la de E para una carga punto se obtiene:
Escogiendo el punto de referencia A en el infinito, esto es, haciendo que , considerando que en ese sitio y eliminando el subíndice B, se obtiene:
Esta ecuación muestra claramente que las superficies equipotenciales para una carga puntual aislada son esferas concéntricas a la carga puntual.
Superficies equipotenciales producidas por una carga puntual
Potencial debido a dos cargas puntuales
El potencial en un punto P debido a dos cargas es la suma de los potenciales debido a cada carga individual en dicho punto.
Siendo y las distancias entre las cargas y y el punto P respectivamente.
Ing. Magno Cuba Atahua
Potencial Eléctrico
Potencial eléctrico generado por una distribución discreta de cargas
El potencial en un punto cualquier debido a un grupo de cargas punto se obtiene calculando el potencial debido a cada
...