Propiedades Magneticas De La Materia
Enviado por bryanzau13 • 19 de Mayo de 2015 • 4.213 Palabras (17 Páginas) • 894 Visitas
1.- Magnetización
Magnetización, imantación o imanación de un material es la densidad de momentos dipolares magnéticos que son magnetizados por el metal:
Aquí, M representa magnetización; m es el vector que define el momento magnético; V representa el volumen, y N es el número de momentos magnéticos de la muestra. La cantidad de N/V se escribe generalmente como n, la densidad del número de momentos magnéticos. El campo-M se mide en amperios por metro en unidades del SI.
Magnetización es también conocido como polarización magnética que es un campo vectorial y se denota como M. De los ingenieros y físicos percibirla como la cantidad de momento magnético por unidad de volumen. Muestra la densidad de momentos de dipolo magnético permanente o inducidos en sustancias magnéticas. Momentos magnéticos susceptibles de magnetización pueden provenir de cualquiera de las dos corrientes eléctricas microscópicas sacadas de movimiento de electrones en átomos, o núcleos o spin intrínseco de los electrones. Momento magnético también es distorsionada por parámetros tales como temperatura y aplica el campo magnético.
Las sustancias ferro magnéticas son la única clase de materiales magnéticos capaces de alcanzar la magnetización neta debido a la respuesta material a campo magnético externo, combinada con la posible inherente de momentos de dipolo magnéticos desequilibradas al azar por el propio material. Magnetización varía entre puntos ya que no es homogéneo a lo largo de un material. Puede ser utilizado para calcular que las fuerzas resultaron de sus interacciones.
En la mayoría de los materiales, la magnetización aparece cuando se aplica un campo magnético a un cuerpo. En unos pocos materiales, principalmente los ferro magnéticos, la magnetización puede tener valores altos y existir aun en ausencia de un campo externo. También se puede magnetizar un cuerpo haciéndolo girar.
El cálculo analítico de la magnetización de un cuerpo es, en general, imposible, lo que incluye casos tan simples como los electroimanes en forma de barra o de herradura. En ciertos casos en los que el cuerpo adopta una forma concreta es posible la solución analítica, como en un toro o un anillo completamente arrollado con un conductor (anillo de Rowland) o en esferas en campos uniformes; hay también situaciones físicas en las que son posibles ciertas simplificaciones para su resolución.
Para describir la imanación se recurre a tres campos promediados en el espacio, que describen de forma macroscópica las cargas en movimiento, los momentos magnéticos cuánticos y el campo de inducción magnética B:
• B es el promedio del campo magnético microscópico (que se representa con la misma letra que el campo real, lo que da origen a confusiones).
• M se refiere a los momentos dipolares magnéticos de las cargas ligadas.
• H es la excitación magnética y se refiere a las corrientes libres y los polos magnéticos. Aunque se identifica con el campo externo, el campo H puede tener fuentes en el cuerpo magnetizado.
La relación entre estos tres campos es:
En un anillo de Rowland, el campo M depende del campo H, y están relacionados por las susceptibilidad magnética:
(Aunque debería depender de B, depende de H por razones históricas. Dado que en general M y H no tienen la misma dirección, se puede definir la susceptibilidad a partir de sus módulos:
A su vez, B y H se relacionan de la siguiente manera:
donde μ es la permeabilidad magnética del medio en el que aparece el campo magnético. Es una ecuación constitutiva en la que, según el medio material puede ser una constante, un campo escalar dependiente del tiempo y/o de la posición, un tensor (matriz) en el caso de los materiales anisótropos o incluso estar indefinido. También depende de la forma del cuerpo, ya que la relación solo es lineal en casos muy concretos, como barras infinitas, esferas en campos uniformes y anillos de Rowland.
Si la magnetización es positiva, el campo magnético se refuerza en el interior del material (como ocurre en los paramagnetos y en los ferromagnetos, por ejemplo).
En cambio, si la magnetización es negativa, el campo magnético se debilita en el interior del material (como ocurre en los diamagnetos). En los superconductores, la inducción magnética B es nula, así que la magnetización ha de ser siempre de la misma magnitud y dirección que el campo magnético H, pero en sentido inverso.
El campo de imanación se puede expresar por sus efectos macroscópicos de dos formas:
• donde tiene componente tangencial, con una corriente superficial. Formalmente es rot M y contribuye al campo B;
• donde tiene componente normal, con un polo magnético. Formalmente es -div M y contribuye al campo H.
Magnetización en las ecuaciones de Maxwell
El comportamiento de los campos magnéticos, campos eléctricos, densidad de carga, y la densidad de corriente es descrito por las ecuaciones de Maxwell. A continuación se describe el papel de la magnetización.
Las relaciones entre B, H y M
La magnetización define el campo magnético H auxiliar como
que es conveniente para diversos cálculos. La permeabilidad de vacío 0 es, por definición, 4p10-7 Vs /.
Una relación entre M y H existe en muchos materiales. En diamagneto y paramagnetos, la relación suele ser lineal:
Dónde m se llama la susceptibilidad magnética de volumen.
En ferromagnetos no hay correspondencia uno a uno entre M y H, debido a la histéresis.
Corriente de magnetización
La magnetización M hace una contribución a la densidad de corriente J, conocida como la corriente de magnetización o consolidado actual:
de modo que el total de densidad de corriente que entra en las ecuaciones de Maxwell está dada por
donde Jf es la densidad de corriente eléctrica de cargas libres, el segundo término es la contribución de la magnetización, y el último término está relacionado con la polarización eléctrica P.
Magneto estática
En la ausencia de corrientes eléctricas libres y los efectos dependientes del tiempo, las ecuaciones de Maxwell que describen las cantidades magnéticos para reducir
Estas ecuaciones pueden resolverse fácilmente en analogía con los problemas electrostáticos donde
En este sentido desempeña el papel de un "densidad de carga magnética" análoga a la densidad de carga eléctrica.
Magnetización es la densidad de volumen de momento magnético. Es decir: si un cierto volumen tiene magnetización a continuación, el elemento de volumen
...