Propiedades de los límites
Enviado por yirlehi • 16 de Octubre de 2013 • Trabajo • 2.269 Palabras (10 Páginas) • 773 Visitas
Limites
Para la matemática, un límite es una magnitud a la que se acercan progresivamente los términos de una secuencia infinita de magnitudes. Un límite matemático, por lo tanto, expresa la tendencia de una función o de una sucesión mientras sus parámetros se aproximan a un cierto valor.
Una definición informal del límite matemático indica que el límite de una función f(x) es T cuando x tiende a s, siempre que se puede hallar para cada ocasión un x cerca de s de manera tal que el valor de f(x) sea tan cercano a T como se pretenda.
No obstante, además del límite citado, no podemos obviar que existen otros muy importantes en el ámbito de las Matemáticas. Así, también se puede hablar del límite de una sucesión que puede ser existente o único y divergente, en el caso de que los términos de aquella no converjan en ningún punto.
De la misma manera, también hay que hablar de otra serie de límites matemáticos tales como el límite de una sucesión de conjuntos o el de espacios topológicos. Entre estos últimos están los que hacen referencia a los filtros o a las redes.
tampoco podemos pasar por alto la existencia de lo que se conoce como Límite de Banach. Este último, que recibe el nombre del matemático polaco Stefan Banach, es aquel que gira entorno a lo que se conoce como espacio de Banach. Este es una pieza fundamental dentro de lo que es el análisis funcional y puede definirse como el espacio donde están funciones que cuentan con una dimensión infinita.
Al igual que otros conceptos matemáticos, los límites cumplen con diversas propiedades generales que ayudan a simplificar los cálculos. Sin embargo, puede resultar muy difícil comprender esta idea ya que se trata de un concepto abstracto
.
En matemática, la noción está vinculada con la variación de los valores que toman las funciones o sucesiones y con la idea de aproximación entre números. Esta herramienta ayuda a estudiar el comportamiento de la función o de la sucesión cuando se acercan a un punto dado.
Propiedades de los límites:
1) Si dos funciones f(x) y g(x) toman valores iguales en un entorno reducido de un punto de acumulación x=a y una de ellas tiene límite l en ese punto, la otra también tiene límite l en a.
2) Si una función tiene límite en un punto, ese límite es único. Una función no puede tener dos límites distintos en un punto.
3) Si una función tiene límite l en un punto, en un entorno reducido del mismo, la función toma valores menores que cualquier número mayor que el límite y mayores que cualquier número menor que el límite
Corolario1: si una función tiene en un punto un límite distinto de cero, en un entorno reducido del punto, la función determina valores del mismo signo que su límite
Corolario2: toda función que tiene límite finito en un punto, está acotada en un entorno reducido del mismo
4) Si en un entorno reducido de un punto, los valores que determina la función están comprendidos entre los de otras dos funciones que tienen el mismo límite en ese punto, ella también tiene ese mismo límite en el punto.
Teoremas sobre límites
Teorema 1: límite de una función constante.
Sea f(x)=k(constante), entonces:
Lim f(x)=Limk=k
x— A.....x— A
Teorema 2: límite de f(x)=x cuando x— A
Sea f(x)=x, entonces
Lim f(x)=Limx=A
x— A.....x— A
Teorema 3: límite de una función multiplicada por una constante
Sea k una constante y f(x) una función dada, entonces:
Lim kf(x)=kLimf(x)=A
x— A.....x— A
Teorema 4: límite de una suma, resta, producto y cociente de funciones
Supongamos que.. Lim f(x)=L1 y Lim g(x)=L2
x— A.... ........x— A
Entonces:
Lim (f(x)+g(x))=L1 +L2
x— A...
Lim (f(x)-g(x))=L1-L2
x— A.
........ .Lim (f(x)*g(x))=L1*L2
..x— A.
..........Lim (f(x)÷g(x))=L1÷L2
...x— A
.
Teorema 5: límite de una potencia
Sea n un número entero positivo, entonces:
Lim x^n=a^n
x— A...
Teorema 6: límite de un polinomio
Sea f(x) una función polinominal, entonces:
Lim f(x)=f(A)
x— A...
Teorema 7: límite de una función racional
Sea f(x)= p(x)÷q(x) un cociente de polinomios, entonces:
Lim f(x)=p(A)÷q(A) (si q(A) no es cero)
x— A...
Teorema 8: límite de una función que contiene un radical
Sea A 0 y n es cualquier entero positivo, o bien, si A 0 y n es un entero positivo impar, entonces:
Lim x^1÷n=A^1÷n
x— A...
Teorema 9: límite de una función compuesta
Supongamos que.. Lim g(x)=L y Lim f(x)= f(L)
x— A.... ......x— L
Entonces:
Lim f (g(x))= f(L)
x— A..
Límites laterales:
Cuando las condiciones que exigen la existencia de límite de una función en un punto a, se verifican solamente para valores de x menores que a, se dice que existe límite por la izquierda de a.
Si las condiciones se verifican únicamente para valores de x mayores que a se dice que existe límite por la derecha de a.
Tomemos el siguiente ejemplo de la función discontinua f(x):
Límite de una función
La noción de límite de una función en un número (un punto de la recta real) se presentará mediante el siguiente ejemplo: Supongamos que se nos pide dibujar la gráfica de la función
Para todo punto x ≠ 1 podemos trazar la gráfica por los métodos conocidos por todos nosotros. Ahora, para tener idea del comportamiento de la gráfica de f cerca de x=1, usamos dos conjuntos de valores x, uno que se aproxime al 1 por la izquierda y otro por la derecha. La siguiente tabla muestra los correspondientes valores de f (x).
x se acerca al 1 por la izquierda x se acerca al 1 por la derecha
x 0,9 0,99 0,999 1 1,001 1,01 1,1
f ( x ) 2,71 2,9701 2,997001 ¿? 3,003001 3,0301 3,31
f (x) se acerca al 3 f (x) se acerca al 3
La figura 1 es la gráfica de la función y como podemos observar, en dicha gráfica hay un salto en el punto (1; 3), esto se debe a que la función f no está definida en el número 1. Es de notar que ésta gráfica es la de la función menos el punto (1; 3). La función g se obtiene a partir de la función f, factorizando el numerador y simplificando. La discusión anterior conduce a la siguiente descripción informal: Si f(x) se aproxima arbitrariamente
...