Péndulo simple
Enviado por charli32145 • 23 de Noviembre de 2013 • 395 Palabras (2 Páginas) • 353 Visitas
Péndulo simple
El péndulo simple (también llamado péndulo matemático o péndulo ideal) es un sistema idealizado constituido por una partícula de masa m que está suspendida de un punto fijo O mediante un hilo inextensible y sin peso. Naturalmente es imposible la realización práctica de un péndulo simple, pero si es accesible a la teoría.
El péndulo simple o matemático se denomina así en contraposición a los péndulos reales, compuestos o físicos, únicos que pueden construirse
Si la partícula se desplaza a una posición q0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar.
El péndulo describe una trayectoria circular, un arco de una circunferencia de radio l. Estudiaremos su movimiento en la dirección tangencial y en la dirección normal.
Las fuerzas que actúan sobre la partícula de masa m son dos
• el peso mg
• La tensión T del hilo
Descomponemos el peso en la acción simultánea de dos componentes, mg•senq en la dirección tangencial y mg•cosq en la dirección radial.
• Ecuación del movimiento en la dirección radial
La aceleración de la partícula es an=v2/l dirigida radialmente hacia el centro de su trayectoria circular.
La segunda ley de Newton se escribe
man=T-mg•cosq
Conocido el valor de la velocidad v en la posición angular q podemos determinar la tensión T del hilo.
La tensión T del hilo es máxima, cuando el péndulo pasa por la posición de equilibrio, T=mg+mv2/l
Es mínima, en los extremos de su trayectoria cuando la velocidad es cero, T=mgcosq0
• Principio de conservación de la energía
En la posición θ=θ0 el péndulo solamente tiene energía potencial, que se transforma en energía cinética cuando el péndulo pasa por la posición de equilibrio.
Comparemos dos posiciones del péndulo:
En la posición extrema θ=θ0, la energía es solamente potencial.
E=mg(l-l•cosθ0)
En la posición θ, la energía del péndulo es parte cinética y la otra parte potencial
La energía se conserva
v2=2gl(cosθ-cosθ0)
La tensión de la cuerda es
T=mg(3cosθ-2cosθ0)
La tensión de la cuerda no es constante, sino que varía con la posición angular θ. Su valor máximo se alcanza cuando θ=0, el péndulo pasa por la posición de equilibrio (la velocidad es máxima). Su valor mínimo, cuando θ=θ0 (la velocidad es nula).
• Ecuación del movimiento en la dirección tangencial
La aceleración de la partícula es at=dv/dt.
La segunda ley de Newton se escribe
mat=-mg•senq
La relación entre la aceleración tangencial at y la aceleración
...