ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Sistema de numeración


Enviado por   •  7 de Septiembre de 2013  •  Trabajo  •  1.856 Palabras (8 Páginas)  •  275 Visitas

Página 1 de 8

Introducción

Cuando los hombres empezaron a contar usaron los dedos, guijarros, marcas en bastones, nudos en una cuerda y algunas otras formas para ir pasando de un número al siguiente. A medida que la cantidad crece se hace necesario un sistema de representación más práctico.

En diferentes partes del mundo y en distintas épocas se llegó a la misma solución, cuando se alcanza un determinado número se hace una marca distinta que los representa a todos ellos. Este número es la base. Se sigue añadiendo unidades hasta que se vuelve a alcanzar por segunda vez el número anterior y se añade otra marca de la segunda clase . Cuando se alcanza un número determinado (que puede ser diferente del anterior constituyendo la base auxiliar) de estas unidades de segundo orden, las decenas en caso de base 10, se añade una de tercer orden y así sucesivamente.

Desde hace 5000 años la gran mayoría de las civilizaciones han contado en unidades, decenas, centenas, millares etc. es decir de la misma forma que seguimos haciéndolo hoy. Sin embargo la forma de escribir los números ha sido muy diversa y muchos pueblos han visto impedido su avance científico por no disponer de un sistema eficaz que permitiese el cálculo.

El sistema actual fue inventado por los indios y transmitido a Europa por los árabes;. Del origen indio del sistema hay pruebas documentales más que suficientes, entre ellas la opinión de Leonardo de Pisa (Fibonacci) que fue uno de los indroductores del nuevo sistema en la Europa de 1200. El gran mérito fue la introducción del concepto y símbolo del cero, lo que permite un sistema en el que sólo diez simbolos puedan representar cualquier número por grande que sea y simplificar la forma de efectuar las operaciones.

CAPITULO 1

Sistema de numeración

Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos en el sistema.

Cualquier sistema consta fundamentalmente de una serie de elementos que lo conforman, una serie de reglas que permite establecer operaciones y relaciones entre tales elementos. Por ello, puede decirse que un sistema de numeración es el conjunto de elementos (símbolos o números), operaciones y relaciones que por intermedio de reglas propias permite establecer el papel de tales relaciones y operaciones.

Un sistema de numeración puede representarse como

Estas reglas son diferentes para cada sistema de numeración considerado, pero una regla común a todos es que para construir números válidos en un sistema de numeración determinado sólo se pueden utilizar los símbolos permitidos en ese sistema.

Los hombres supieron asociar tempranamente a una colección de objetos un grupo de signos o de cosas: trazos marcados en la madera, en un hueso o en la arena, montones de piedras, gestos con la mano o con la cabeza, etc. Así, los pastores sumerios llevaban la cuenta de los nacimientos, pérdidas, compras y ventas de sus ovejas representando cada animal del rebaño mediante un cono de arcilla (calculi) colocado en un a envoltura de arcilla. La economía, más compleja, de las primeras aglomeraciones urbanas de la Baja Mesopotamia eligió un sistema más elaborado: se imprimieron sobre la envoltura de arcilla signos que representaban los mismos signos que los calculi. Estos últimos, que ya no tenían razón de ser, fueron poco a poco suprimidos, y las envolturas reemplazadas por las primeras tablillas, numerales. Por tanto, las primeras numeraciones escritas aparecieron al mismo tiempo que las primeras formas de escritura, en Mesopotamia hacia 3300 a. J. C. y en Egipto hacia 3200 a. J. C.

CAPITULO 2

Clasificación de los sistemas de numeración

Los sistemas de numeración pueden clasificarse en tres grupos que son:

=> S. Numeración No-posicionales.

=> S. Numeración Semi-posicionales.

=> S. Numeración posicionales.

En los sistemas no-posicionales los dígitos tienen el valor del símbolo utilizado, que no depende de la posición (columna) que ocupan en el número.

Por ejemplo, el sistema de numeración egipcio es no posicional, en cambio el babilónico es posicional. Las lenguas naturales poseen sistemas de numeración posicionales basados en base 10 ó 20, a veces con subsistemas de cinco elementos. Además, en algunas pocas lenguas los numerales básicos a partir de cuatro tienen nombres basados en numerales más pequeños.

2.1 Sistema de numeración No-posicionales.

Estos son los más primitivos se usaban por ejemplo los dedos de la mano para representar la cantidad cinco y después se hablaba de cuántas manos se tenía. También se sabe que se usaba cuerdas con nudos para representar cantidad. Tiene mucho que ver con la coordinabilidad entre conjuntos. Entre ellos están los sistemas el antiguo Egipto, el sistema de numeración romana, y los usados en Mesoamérica por mayas, aztecas y otros pueblos.

En los sistemas no-posicionales los dígitos tienen el valor del símbolo utilizado, que no depende de la posición (columna) que ocupan en el número.

Entre ellos están los sistemas el antiguo Egipto, el sistema de numeración romana, y los usados en Mesoamérica por mayas, aztecas y otros pueblos.

El sistema del antiguo Egipto.

Desde el tercer milenio A.C. los egipcios usaron un sistema de escribir los Números en base diez utilizando los geroglíficos de la figura para representar los distintos ordenes de unidades.

El sistema Romano. El sistema de numeración romana se desarrolló en la antigua Roma y se utilizó en todo su imperio. Es un sistema de numeración no posicional, en el que se usan algunas letras mayúsculas como símbolos para representar los números.

Los romanos desconocían el cero, introducido posteriormente por los árabes, así que no existe ningún símbolo en el sistema

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com