Temas De Fisica
Enviado por handyortiz • 21 de Mayo de 2013 • 14.460 Palabras (58 Páginas) • 538 Visitas
GASES
Se denomina gas al estado de agregación de la materia que no tiene forma ni volumen propio. Su principal composición son moléculas no unidas, expandidas y con poca fuerza de atracción, haciendo que no tengan volumen y forma definida, lo cual provoca que este se expanda para ocupar todo el volumen del recipiente que la contiene.
PROPIEDADES DE LOS GASES
1. Se adaptan a la forma y el volumen del recipiente que los contiene. Un gas, al cambiar de recipiente, se expande o se comprime, de manera que ocupa todo el volumen y toma la forma de su nuevo recipiente.
2. Se dejan comprimir fácilmente. Al existir espacios intermoleculares, las moléculas se pueden acercar unas a otras reduciendo su volumen, cuando aplicamos una presión.
3. Se difunden fácilmente. Al no existir fuerza de atracción intermolecular entre sus partículas, los gases se esparcen en forma espontánea.
4. Se dilatan, la energía cinética promedio de sus moléculas es directamente proporcional a la temperatura aplicada.
COMPORTAMIENTO DE LOS GASES
Para el comportamiento térmico de partículas de la materia existen cuatro cantidades medibles que son de gran interés: presión, volumen, temperatura y masa de la muestra del material.
Cualquier gas se considera como un fluido, porque tiene las propiedades que le permiten comportarse como tal.
Sus moléculas, en continuo movimiento, logran colisionar las paredes que los contiene y casi todo el tiempo ejercen una presión permanente. Como el gas se expande, la energía intermolecular (entre molécula y molécula) hace que un gas, al ir añadiéndole energía calorífica, tienda a aumentar su volumen.
Un gas tiende a ser activo químicamente debido a que su superficie molecular es también grande, es decir entre cada partícula se realiza mayor contacto, haciendo más fácil una o varias reacciones entre las sustancias.
Para entender mejor el comportamiento de un gas siempre se realizan estudios con respecto al gas ideal aunque este en realidad nunca existe y las propiedades de este son:
• Un gas está constituido por moléculas de igual tamaño y masa, pero una mezcla de gases diferentes, no.
• Se le supone con un número pequeño de moléculas, así su densidad es baja y su atracción molecular es nula.
• El volumen que ocupa el gas es mínimo, en comparación con el volumen total del recipiente.
• Las moléculas de un gas contenidas en un recipiente, se encuentran en constante movimiento, por lo que chocan, ya entre sí o contra las paredes del recipiente que las contiene.
Para explicar el comportamiento de los gases, las nuevas teorías utilizan tanto la estadística como la teoría cuántica, además de experimentar con gases de diferentes propiedades o propiedades límite, como el UF6, que es el gas más pesado conocido.
GASES FINALES
Si se quiere afinar más o si se quiere medir el comportamiento de algún gas que escapa al comportamiento ideal habrá que recurrir a las ecuaciones de los gases reales que son variadas y más complicadas cuanto más precisas.
Los gases reales no se expanden infinitamente, sino que llegaría un momento en el que no ocuparían más volumen. Esto se debe a que entre sus átomos/moléculas se establecen unas fuerzas bastante pequeñas, debido a los cambios aleatorios de sus cargas electrostáticas, a las que se llama fuerzas de Van der Waals.
El comportamiento de un gas suele concordar más con el comportamiento ideal cuanto más sencilla sea su fórmula química y cuanto menor sea su reactividad, tendencia a formar enlaces. Así, por ejemplo, los gases nobles al ser monoatómicos y tener muy baja reactividad, sobre todo el helio, tendrán un comportamiento bastante cercano al ideal. Les seguirán los gases diatómicos, en particular el más liviano hidrógeno. Menos ideales serán los triatómicos como el dióxido de carbono, el caso del vapor de agua aún es peor ya que la molécula al ser polar tiende a establecer puentes de hidrógeno lo que aún reduce más la idealidad. Dentro de los gases orgánicos el que tendrá un comportamiento más ideal será el metano perdiendo idealidad a medida que se engrosa la cadena de carbono. Así el butano es de esperar que tenga un comportamiento ya bastante alejado de la idealidad. Esto es porque cuanto más grande es la partícula fundamental constituyente del gas, mayor es la probabilidad de colisión e interacción entre ellas, factor que hace disminuir la idealidad. Algunos de estos gases se pueden aproximar bastante bien mediante las ecuaciones ideales mientras que en otros casos hará falta recurrir a ecuaciones reales muchas veces deducidas empíricamente a partir del ajuste de parámetros.
También se pierde la idealidad en condiciones extremas, altas presiones o bajas temperaturas. Por otra parte, la concordancia con la idealidad puede aumentar si trabajamos a bajas presiones o altas temperaturas. También por su estabilidad química.
VARIABLES DE LOS GASES
1. PRESIÓN:
Es la fuerza ejercida por unidad de área. En los gases esta fuerza actúa en forma uniforme sobre todas las partes del recipiente.
P = F ÷ A = Pascal
Presión (fuerza perpendicular a la superficie) (área donde se distribuye la fuerza) = N/m2
P = F ÷ A
Presión (dinas) ( cm2 ) = dinas / cm2
Otras unidades usadas para la presión : gramos fuerza / cm2, libras / pulgadas2.
La presión atmosférica es la fuerza ejercida por la atmósfera sobre los cuerpos que están en la superficie terrestre. Se origina del peso del aire que la forma. Mientras más alto se halle un cuerpo menos aire hay por encima de él, por consiguiente la presión sobre él será menor.
Presión atmosférica = 76 cm Hg = 760 mm Hg = 1 atmósfera.
2. TEMPERATURA
Es una medida de la intensidad del calor, y el calor a su vez es una forma de energía que podemos medir en unidades de calorías. Cuando un cuerpo caliente se coloca en contacto con uno frío, el calor fluye del cuerpo caliente al cuerpo frío.
La temperatura de un gas es proporcional a la energía cinética media de las moléculas del gas. A mayor energía cinética mayor temperatura y viceversa.
La temperatura de los gases se expresa en grados kelvin.
3. CANTIDAD
La cantidad de un gas se puede medir en unidades de masa, usualmente en gramos. De acuerdo con el sistema de unidades SI, la cantidad también se expresa mediante el número de moles de sustancia, esta puede calcularse dividiendo el peso del gas por su peso molecular.
4. VOLUMEN
Es el espacio
...