ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teor´ıa de Ensemble


Enviado por   •  17 de Junio de 2013  •  Tesis  •  261 Palabras (2 Páginas)  •  757 Visitas

Página 1 de 2

1 Teor´ıa de Ensemble

En el cap´ıtulo anterior postulamos que el sistema en un macroestado (N, V,E) tiene

igual probabilidad de estar en cualquiera de sus microestados compatibles, esto no

siempre es verdad,ya que existen al medos dos tipos de operadores densidad estacionarios,

 =constante y  (H).

Ensemble: gran colecci´on de sistemas, todos en el mismo macroestado pero cada

uno de ellos en un determinado microestado.

1.1 Microcanonical Ensemble

Todos los microestados compatibles con es macroestado son igualmente probables.

En este ensemble el macroestado est´a definido por (N, V,E), sin embargo,

como una t´ecnica para calcular el n´umero de microestados se puede considerar

E 2



E − 

2 ,E + 

2



, con  ! 0.

Los puntos representativos del ensemble est´an dentro de un cascar´on definido

por:

E − 

2  H (q, p)  E + 

2 ,

el volumen en el espacio de fase del cascar´on

(N, V,E, ) =

Z



d =

Z



d3Nqd3Np.

El ensemble microcanonico posee  tal que

 (q, p) =



constate E − 

2  H  E + 

2

0 en otra parte,

• el n´umero de puntos representativos en el volumen d es proporcional a

d

• la probabilidad de encontrar un punto representativo en d es independiente

de la localisaci´on de d dentro de  (igual probabilidad apriori).

La conecci´on entre la mec´anica del ensemble microcanonico y la termodin´amica

del sistema es

 /

!

=



0

0 volumen fundamental

as´ı,

S = k ln

= k ln



0

,

desde el punto de vista dimesional 0 / ~3N.

1

1.2 Oscilador Arm´onico Unidimensional

H(q, p) = k

2 q2 + 1

2mp2,

en este caso E =constante, ! frecuencia angular:

q2

2E/m!2 + p2

2mE = 1 ellipse

superficie = 2E/!.

Luego del espectro cu´antico:

En = ~!



n +

1

2



,

= n + 1,

entonces

0 =



=

2E/!

n + 1

=

2~

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com