ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Uso De Microondas En Telecomunicaciones


Enviado por   •  7 de Marzo de 2012  •  4.670 Palabras (19 Páginas)  •  1.659 Visitas

Página 1 de 19

Uso de Microondas en teleomunicaciones

La ingeniería de microondas/milimétricas tiene que ver con todos aquellos dispositivos, componentes y sistemas que trabajen en el rango frecuencial de 300 MHz a 300 GHz. Debido a tan amplio margen de frecuencias, tales componentes encuentran aplicación en diversos sistemas de comunicación. Ejemplo típico es un enlace de Radiocomunicaciones terrestre a 6 GHz en el cual detrás de las antenas emisora y receptora, hay toda una circuitería capaz de generar, distribuir, modular, amplificar, mezclar, filtrar y detectar la señal. Otros ejemplos lo constituyen los sistemas de comunicación por satélite, los sistemas radar y los sistemas de comunicación móviles, muy en boga en nuestros días.

La tecnología de semiconductores, que proporciona dispositivos activos que operan en el rango de las microondas, junto con la invención de líneas de transmisión planares; ha permitido la realización de tales funciones por circuitos híbridos de microondas.

En estos circuitos, sobre un determinado sustrato se definen las líneas de transmisión necesarias. Elementos pasivos (condensadores, resistencias) y activos (transistores, diodos) son posteriormente incorporados al circuito mediante el uso de pastas adhesivas y técnicas de soldadura. De ahí el nombre de tecnología híbrida de circuitos integrados (HMIC: "Hibrid Microwave Integrated Circuit"). Recientemente, la tecnología monolítica de circuitos de microondas (MMIC), permite el diseño de circuitos/subsistemas capaces de realizar, muchas de las funciones mencionadas anteriormente, en un sólo "chip". Por las ventajas que ofrece ésta tecnología, su aplicación en el diseño de amplificadores para receptores ópticos, constituye un campo activo de investigación y desarrollo.

El diseño de circuitos de microondas en ambas tecnologías, ha exigido un modelado preciso de los diferentes elementos que forman el circuito. De especial importancia son los dispositivos activos (MESFET, HEMT, HBT); pues conocer su comportamiento tanto en pequeña señal como en gran señal (régimen no lineal), es imprescindible para poder predecir la respuesta de un determinado circuito que haga uso de él. El análisis, modelado y simulación de éstos dispositivos, constituye otra de las áreas de trabajo

Materiales en comunicaciones

La utilización de nuevos materiales con altas prestaciones es uno de los pilares del avance espectacular de las tecnologías de la información y comunicaciones. El desarrollo de aplicaciones basadas en sus propiedades requiere un profundo conocimiento previo de éstas. En particular, el descubrimiento de superconductividad en óxidos cerámicos multimetálicos a temperaturas superiores a 77 K (superconductores de alta temperatura, SAT) puede permitir del desarrollo práctico de algunas aplicaciones de la superconductividad económicamente inviables con los superconductores clásicos. Sin embargo, la gran complejidad de los SAT y su naturaleza granular dificultan la puesta en marcha de aplicaciones de los mismos de forma inmediata, a pesar del gran esfuerzo investigador que en este campo se está realizando en los países avanzados. En concreto, en nuestro grupo se ha trabajado en la caracterización experimental y modelado fenomenológico de las propiedades electromagnéticas de superconductores de alta temperatura crítica, incidiendo especialmente en las implicaciones de la granularidad, y en el desarrollo de aplicaciones de los mismos en magnetometría y en cintas para el transporte de corriente sin pérdidas. Por otra parte, en relación con las aplicaciones de la superconductividad clásica, se ha trabajado en la implementación en España de los patrones primarios de tensión (efecto Josephson) y resistencia (efecto Hall cuántico), en colaboración con grupos nacionales y extranjeros especializados en metrología eléctrica básica. Por último, también se ha colaborado con otros grupos de investigación en la caracterización electromagnética de materiales de interés tecnológico, como imanes permanentes o aceros estructurales

Transmisión sin cables

Introducción

Cuando se piensa en comunicación de datos generalmente se piensa en comunicación a través de cable, debido a que la mayoría de nosotros tratamos con este tipo de tecnología en nuestro día a día. Haciendo a un lado las complicadas redes cableadas también tenemos la llamada COMUNICACIÓN INALÁMBRICA muy comúnmente a nuestro alrededor.

La Comunicación de data inalámbrica en la forma de microondas y enlaces de satélites son usados para transferir voz y data a larga distancia. Los canales inalámbricos son utilizados para la comunicación digital cuando no es económicamente conveniente la conexión de dos puntos vía cable; además son ampliamente utilizados para interconectar redes locales (LANS) con sus homologas redes de área amplia (WANS) sobre distancias moderadas y obstáculos como autopistas, lagos, edificios y ríos. Los enlaces vía satélite permiten no solo rebasar obstáculos físicos sino que son capaces de comunicar continentes enteros, barcos, rebasando distancia sumamente grandes.

Los sistemas de satélites y de microondas utilizan frecuencias que están en el rango de los MHz y GHz, usualmente utilizan diferentes frecuencias para evitar interferencias pero comparten algunas bandas de frecuencias.

Comunicación vía microondas

Básicamente un enlace vía microondas consiste en tres componentes fundamentales: El Transmisor, El receptor y El Canal Aéreo. El Transmisor es el responsable de modular una señal digital a la frecuencia utilizada para transmitir, El Canal Aéreo representa un camino abierto entre el transmisor y el receptor, y como es de esperarse el receptor es el encargado de capturar la señal transmitida y llevarla de nuevo a señal digital.

El factor limitante de la propagación de la señal en enlaces microondas es la distancia que se debe cubrir entre el transmisor y el receptor, además esta distancia debe ser libre de obstáculos. Otro aspecto que se debe señalar es que en estos enlaces, el camino entre el receptor y el transmisor debe tener una altura mínima sobre los obstáculos en la vía, para compensar este efecto se utilizan torres para ajustar dichas alturas.

Antenas y torres de microondas

La distancia cubierta por enlaces microondas puede ser incrementada por el uso de repetidoras, las cuales amplifican y redireccionan la señal, es importante destacar que los obstáculos de la señal pueden ser salvados a través de reflectores pasivos. Las siguientes figuras muestran como trabaja un repetidor y como se ven los reflectores pasivos.

La señal de microondas transmitidas es distorsionada y atenuada mientras viaja desde el transmisor hasta el receptor,

...

Descargar como (para miembros actualizados) txt (31 Kb)
Leer 18 páginas más »
Disponible sólo en Clubensayos.com