AJUSTES DE CURVAS
Enviado por MAELEC • 25 de Marzo de 2013 • 506 Palabras (3 Páginas) • 2.526 Visitas
INDICE
1. Introducción
2. Teoría del tema
3. Resumen
4. Resultados
5. Bibliografía
6. Anexos
PRÁCTICA Nº2
AJUSTE DE CURVAS
I. INTRODUCCION
El trabajo realizado en ajuste de curvas nos permite realizar y tener una mejor precisión definida reduciendo los errores
Y tener una mejor función ajustada al máximo.
La diferencia que existe entre la realización en papeles milimetrado , semi logarítmico y logaritmico con respecto al ajuste de curvas atraves de Excel que nos da una curva ajustada
II. MARCO TEORICO
AJUSTES DE CURVA
Los datos que se obtienen mediante mediciones fluctúan debido a errores aleatorios del sistema de medición.
El ajuste de curvas es un proceso mediante el cual, dado un conjunto de N pares de puntos {xi, yi} (siendo x la variable independiente y la dependiente), se determina una función matemática f(x) de tal manera que la suma de los entre la imagen real y la correspondiente obtenida mediante la función ajustada en cada punto sea la mínima posible.
• AJUSTE DE CURVA FUNCION LINEAL
Conocido también como rectas de regresión en (mínimos cuadrados)
Sea {(xk, yk)} Nk =1 un conjunto de N puntos cuyas abcisas {xk} son todas distintas. La recta de regresión o recta óptima en el sentido de los (mínimos cuadrados) es la recta de ecuación y = f (x) = Ax + B que minimiza el error cuadrático medio E2(f ).
Teorema: Recta de Regresión en Mínimos Cuadrados
AJUSTE
Sean {(xk , yk )}Nk=1 N puntos cuyas abcisas {xk}Nk=1 son distintas. Entonces, los coeficientes de la recta de regresión y = Ax + B son la solución del siguiente sistema lineal, conocido como las
ecuaciones normales de Gauss:
AJUSTE DE
• AJUSTE DE CURVA FUNCION NO LINEAL
• A
• JUSTE DE CURVA FUNCION POTENCIAL
El Ajuste Potencial y = AxM
Algunas situaciones se modelan mediante una función del tipo f (x) = AxM, donde (M) es una constante conocida. En estos casos solo hay que determinar un parámetro.
Teorema: Ajuste potencial
Supongamos que tenemos N puntos {(xk, yk)}Nk=1 cuyas abcisas son distintas. Entonces, el coeficiente A de la curva potencial óptima
...