ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La historia del álgebra


Enviado por   •  30 de Noviembre de 2012  •  Ensayo  •  1.049 Palabras (5 Páginas)  •  464 Visitas

Página 1 de 5

ALGEBRA

El Algebra es la rama de las matemáticas que estudia la cantidad considerada del modo más general posible. LA HISTORIA DEL ALGEBRA

La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax2 + bx = c), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas. Los anticuados babilonios resolvían cualquier ecuación cuadrática empleando esencialmente los mismos métodos que hoy se enseñan. También fueron hábiles de solucionar ciertas ecuaciones indeterminadas.

Los matemáticos alejandrinos Herón y Diofante continuaron con la tradición de Egipto y Babilonia, aunque el libro Las aritméticas de Diofante es de suficiente más nivel y presenta muchas soluciones sorprendentes para ecuaciones indeterminadas difíciles. Esta antigua sabiduría sobre resolución de ecuaciones encontró, a su vez, acogida en el mundo islámico, en donde se le llamó ciencia de reducción y equilibrio. (La palabra árabe al−jabru que significa `reducción', es el origen de la palabra álgebra. En el siglo IX, el matemático al−Jwrizm; escribió uno de los primeros libros árabes de álgebra, una presentación sistemática de la teoría fundamental de ecuaciones, con ejemplos y demostraciones incluidas. A finales del siglo IX, el matemático egipcio Abu

Kamil enunció y demostró las leyes fundamentales e identidades del álgebra, y resolvió problemas tan complicados como encontrar la x, y, z que cumplen x + y + z = 10, x2 + y2 = z2, y xz = y2.

En las civilizaciones antiguas se escribían las expresiones algebraicas utilizando abreviaturas sólo ocasionalmente; sin embargo, en la edad media, los matemáticos árabes fueron capaces de describir cualquier potencia de la incógnita x, y desarrollaron el álgebra fundamental de los polinomios, aunque sin usar los símbolos modernos. Esta álgebra incluía multiplicar, dividir y extraer raíces cuadradas de polinomios, así como el conocimiento del teorema del binomio. El matemático, poeta y astrónomo persa Omar Khayyam mostró cómo expresar las raíces de ecuaciones cúbicas utilizando los segmentos obtenidos por intersección de secciones cónicas, aunque no fue capaz de encontrar una fórmula para las raíces. La traducción al latín del Álgebra de al−Jwrizm fue publicada en el siglo XII. A principios del siglo XIII, el matemático italiano Leonardo Fibonacci consiguió encontrar una aproximación cercana a la solución de la ecuación cúbica

x3 + 2x2 + cx = d. Fibonacci había viajado a países árabes, por lo que con seguridad utilizó el método arábigo de aproximaciones sucesivas.

A principios del siglo XVI los matemáticos italianos Scipione del Ferro, Tartaglia y Gerolamo Cardano resolvieron la ecuación cúbica general en función de las constantes que aparecen en la ecuación. Ludovico Ferrari, alumno de Cardano, pronto encontró la solución exacta para la ecuación de cuarto grado y, como consecuencia, ciertos matemáticos de los siglos posteriores intentaron encontrar la fórmula de las raíces de las ecuaciones de quinto grado y superior. Sin embargo, a principios del siglo XIX el matemático noruego Abel Niels y el francés Évariste Galois demostraron la inexistencia de dicha fórmula.

Un avance importante en el álgebra fue la introducción, en el siglo XVI, de símbolos para las incógnitas y

para las operaciones y potencias algebraicas. Debido a este avance, el Libro III de la Geometría

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com