ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teoría de conjunto . La característica esencial de un conjunto


Enviado por   •  22 de Mayo de 2016  •  Ensayo  •  1.223 Palabras (5 Páginas)  •  404 Visitas

Página 1 de 5

Teoría de conjunto

La palabra conjunto generalmente la asociamos con la idea de agrupar objetos, por ejemplo un conjunto de discos, libros, plantas de cultivo y en otras ocasiones en palabras como hato, rebaño, piara, parcelas, campesinado, es decir la palabra conjunto denota una colección de elementos claramente entre sí, que guardan alguna característica en común. Ya sean números, personas, figuras, ideas y conceptos.

En matemáticas el concepto de conjunto es considerado primitivo y ni se da una definición de este, sino que se trabaja con la notación de colección y agrupamiento de objetos, lo mismo puede decirse que se consideren primitivas las ideas de elemento y pertenencia.

La característica esencial de un conjunto es la de estar bien definido, es decir que dado un objeto particular, determinar si este pertenece o no al conjunto. Por ejemplo si se considera el conjunto de los números dígitos, sabemos que el 3 pertenece al conjunto, pero el 19 no. Por otro lado el conjunto de las bellas obras musicales no es un conjunto bien definido, puesto que diferentes personas puedan incluir distintas obras en el conjunto.

Los objetos que forman un conjunto son llamados miembros o elementos, por ejemplo el conjunto de letras del alfabeto; a, b, c,…, x, y, z. que se puede escribir así:

{ a, b, c, … x, y, z}

El detallar a todos los elementos de un conjunto entre las llaves, se denomina forma tabular, extensión o enumeración de los elementos.

Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo: 

{a, b, c} puede escribirse:

{a, c, b}, {c, b, a} {b, a, c} …

En la teoría de conjuntos no se acostumbra a repetir a los elementos:

El conjunto {b, b, b, d, d, } simplemente será { b, d }.

Membresía

Los conjuntos se denotan por letras mayúsculas: A, B, C,… por ejemplo:

A= {a, c, b}

B= {primavera, verano, otoño, invierno}

El símbolo  indicará que un elemento pertenece o es miembro de un conjunto. Por el contrario para indicar que un elemento no pertenece al conjunto de referencia, bastará cancelarlo con una raya inclinada / quedando el símbolo como .

SUBCONJUNTO

Sean los conjuntos A= { 0, 1, 2, 3, 5, 8 } y B={ 1, 2, 5 }

En este caso decimos que B está contenido en A, o que B es subconjunto de A. En general si A y B son dos conjuntos cualesquiera, decimos que B es un subconjunto de A si todo elemento de B lo es de A también.

Por lo tanto si B es un subconjunto de A se escribe B  A. Si B no es subconjunto de A se indicará con una diagonal .

Note que  se utiliza solo para elementos de un conjunto y  solo para conjuntos.

UNIVERSO O CONJUNTO UNIVERSAL

El conjunto que contiene a todos los elementos a los que se hace referencia recibe el nombre de conjunto Universal, este conjunto depende del problema que se estudia, se denota con la letra U y algunas veces con la letra S (espacio muestral).

Por ejemplo si solo queremos referirnos a los 5 primeros números naturales el conjunto queda:

U={ 1, 2, 3, 4, 5 }

Forma alternativa para indicar conjuntos de gran importancia:

  • Conjunto de números naturales (enteros mayores que cero) representados por la letra N donde

N={ 1, 2, 3, .... }

  • Conjunto de números enteros positivos y negativos representados por la letra Z donde

Z={..., -2, -1, 0, 1, 2, ... }

  • Conjunto de números racionales (números que se representan como el cociente de dos números enteros {fracciones }). Estos números se representan por una Q
  • Conjunto de números irracionales (números que no puedan representarse como el cociente de dos números enteros) representados por la letra I.
  • Conjunto de los números reales que son los números racionales e irracionales es decir todos, representados por R.

OPERACIONES CON CONJUNTOS

UNION

La unión de dos conjuntos A y B la denotaremos por A  B y es el conjunto formado por los elementos que pertenecen al menos a uno de ellos ó a los dos. Lo que se denota por:

A  B = { x/x  A ó x  B }

 Ejemplo: Sean los conjuntos A={ 1, 3, 5, 7, 9 } y B={ 10, 11, 12 }

A  B ={ 1, 3, 5, 7, 9, 10, 11, 12 }

INTERSECCION

Sean A={ 1, 2, 3, 4, 5, 6, 8, 9 } y B={ 2, 4, 8, 12 }

Los elementos comunes a los dos conjuntos son: { 2, 4, 8 }. A este conjunto se le llama intersección de A y B; y se denota por A  B, algebraicamente se escribe así:

...

Descargar como (para miembros actualizados) txt (7 Kb) pdf (264 Kb) docx (96 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com