Tres números con nombre
Enviado por katherine.swaggy • 6 de Agosto de 2012 • 338 Palabras (2 Páginas) • 545 Visitas
Tres números con nombre
Hay tres números de gran importancia en matemáticas y que "paradójicamente" nombramos con una letra. Estos números son:
El número designado con la letra griega = 3,14159....(Pi) que relaciona la longitud de la circunferencia con su diámetro ( Longitud = 2..radio= .diámetro).
El número e = 2´71828......, inicial del apellido de su descubridor Leonhard Euler (matemático suizo del siglo XVIII) que aparece como límite de la sucesión de término general .
El número designado con letra griega = 1,61803... (Fi), llamado número de oro y que es la inicial del nombre del escultor griego Fidias que lo tuvo presente en sus obras.
Los tres números tienen infinitas cifras decimales y no son periódicos (sus cifras decimales no se repiten periódicamente). A estos números se les llama irracionales. Cuándo se utilizan se escriben solamente unas cuantas cifras decimales (en los tres ejemplos de arriba hemos tomado 5).
Una diferencia importante desde el punto de vista matemático entre los dos primeros y el número de oro es que los primeros no son solución de ninguna ecuación polinómica (a estos números se les llama trascendentes), mientras que el número de oro si que lo es. Efectivamente, una de las soluciones de la ecuación de segundo grado es que da como resultado el número de oro.
La sección áurea y el número de oro
La sección áurea es la división armónica de una segmento en media y extrema razón. Es decir, que el segmento menor es al segmento mayor, como este es a la totalidad. De esta manera se establece una relación de tamaños con la misma proporcionalidad entre el todo dividido en mayor y menor. Esta proporción o forma de seleccionar proporcionalmente una línea se llama proporción áurea.
Tomemos un segmento de longitud uno y hagamos en el la división indicada anteriormente
Aplicando la proporción áurea obtenemos la siguiente ecuación que tendremos que resolver
Una de las soluciones de esta ecuación (la solución positiva) es x=.
Lo sorprendente ahora es calcular el valor que se obtiene al dividir el segmento mayor entre el menor,
...