ANALISIS DE MARKOV
Enviado por hectoron • 19 de Noviembre de 2014 • 1.291 Palabras (6 Páginas) • 438 Visitas
ANALISIS DE MARKOV
El análisis de Markov, llamado así por los estudios realizados por el ruso Andréi Andréyevich Márkov entre 1906 y 1907, sobre la secuencia de los experimentos conectados en cadena y la necesidad de descubrir matemáticamente los fenómenos físicos. La teoría de Markov se desarrolló en las décadas de 1930 y 1940 por A.N.Kolmagoron, W.Feller, W.Doeblin, P.Levy, J.L.Doob y otros.
El análisis de markov es una forma de analizar el movimiento actual de alguna variable, a fin de pronosticar el movimiento futuro de la misma. Este método ha comenzado a usarse en los últimos años como instrumento de investigaciones de mercadotecnia, para examinar y pronosticar el comportamiento de los clientes desde el punto de vista de su lealtad a una marca y de sus formas de cambio a otras marcas, la aplicación de esta técnica, ya no solo se limita a la mercadotecnia sino que su campo de acción se ha podido aplicar en diversos campos.
Cadenas de markov
Una cadena de Markov, que recibe su nombre del matemático ruso Andrei Markov, es una serie de eventos, en la cual la probabilidad de que ocurra un evento depende del evento inmediato anterior. En efecto, las cadenas de este tipo tienen memoria. “Recuerdan” el último evento y esto condiciona las posibilidades de los eventos futuros. Esta dependencia del evento anterior distingue a las cadenas de Markov de las series de eventos independientes, como tirar una moneda al aire o un dado.
Clasificación de los estados en una cadena de Markov
Las probabilidades de transición asociadas a los estados juegan un papel importante en el estudio de las cadenas de Markov. Para describir con más detalles las propiedades de una cadena de Markov es necesario presentar algunos conceptos y definiciones que se refieren a estos estados.
Los estados que pueden sucederse a sí mismos y, además, es posible alcanzar, por lo menos, alguno de los restantes desde ellos se llaman estados transitorios.
Un estado tal que si el proceso entra en él permanecerá indefinidamente en este estado (ya que las probabilidades de pasar a cualquiera de los otros son cero), se dice estado absorbente.
De una cadena de Markov que consta de estados transitorios y absorbentes se dice que es una cadena absorbente de Markov.
Si una cadena de Markov contiene algún estado absorbente, la línea de la matriz de transición correspondiente a las probabilidades de transición de dicho estado constará de un 1 en la diagonal principal y ceros en los demás elementos. Será por lo tanto una matriz no regular.
Estudio de las cadenas de markov
Para poder estudiar las cadenas de Markov absorbentes es preciso reordenar la matriz de transición de forma que las filas correspondientes a los estados absorbentes aparezcan en primer lugar. Así ordenada se dirá que la matriz de transición está en la forma canónica.
Podemos dividir la matriz en forma canónica en cuatro submatrices. La primera es la matriz unidad I, del orden correspondiente. La segunda , la matriz nula. La tercera contiene las probabilidades de paso de estados transitorios a estados absorbentes. La cuarta contiene las probabilidades de estados transitorios a estados transitorios.
Generalizando:
Una cadena de Markov absorbente contiene p estados transitorios y q estados absorbentes. La matriz canónica del proceso presentará el aspecto siguiente:
I: matriz identidad de dimensión q
O: matriz nula de dimensión q x p
Q: matriz de dimensión p x q que contiene las probabilidades de paso de estados transitorios a absorbentes.
M: matriz p x p con las probabilidades de los estados transitorios a estados transitorios.
Se llama matriz fundamental de la cadena de markov a la matriz resultado de la operación:
...