ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Historia De La Aritmetica


Enviado por   •  19 de Septiembre de 2012  •  1.279 Palabras (6 Páginas)  •  863 Visitas

Página 1 de 6

¿Que es el algebra?

El álgebra es la rama de las matemáticas que estudia las estructuras, las relaciones y las cantidades (en el caso del álgebra elemental). Es una de las principales ramas de la matemática, junto a la geometría, el análisis matemático, la combinatoria y la teoría de números.

La palabra álgebra es de origen árabe, deriva del tratado escrito por el matemático persa Muhammad ibn Musa al-Jwarizmi, titulado "Compendio de cálculo por el método de completado y balanceado", el cual proporcionaba operaciones simbólicas para la solución sistemática de ecuaciones lineales y cuadráticas. Etimológicamente, la palabra álgebra, proviene del árabe y significa "reducción".

Álgebra elemental es la forma más básica del álgebra. A diferencia de la aritmética, en donde sólo se usan los números y sus operaciones aritméticas (como +, −, ×, ÷), en álgebra los números son representados por símbolos (usualmente a, b, c, x, y, z). Esto es útil porque:

• Permite la formulación general de leyes de aritmética (como a + b = b + a), y esto es el primer paso para una exploración sistemática de las propiedades de los números reales.

• Permite referirse a números "desconocidos", formular ecuaciones y el estudio de cómo resolverlas.

• Permite la formulación de relaciones Funcionales.

Este tipo de problemas suelen resolverse hoy mediante ecuaciones lineales, ecuaciones de segundo grado y ecuaciones indefinidas. Por el contrario, la mayoría de los egipcios de esta época, y la mayoría de la India, griegos y matemáticos chinos en el primer milenio antes de Cristo, normalmente resolvían tales ecuaciones por métodos geométricos, tales como los descritos en la matemática, Elementos de Euclides, y los Nueve Capítulos sobre el Arte de las Matemáticas. El trabajo geométrico de los griegos, centrado en las formas, dio el marco para la generalización de las fórmulas más allá de la solución de los problemas particulares de carácter más general, sino en los sistemas de exponer y resolver ecuaciones.

Las mentes griegas matemáticas de Alejandría y Diofanto siguieron las tradiciones de Egipto y Babilonia, pero el libro Arithmetica de Diophantus está en un nivel mucho más alto. Más tarde, los matemáticos árabes y musulmanes desarrollaron métodos algebraicos a un grado mucho mayor de sofisticación. Aunque los babilonios y Diophantus utilizaron sobre todo los métodos especiales ad hoc para resolver ecuaciones, Al-Khowarizmi fue el primero en resolver ecuaciones usando métodos generales. Él resolvió el indeterminado de ecuaciones lineales, ecuaciones cuadráticas, ecuaciones indeterminadas de segundo orden y ecuaciones con múltiples variables.

La palabra "álgebra" es el nombre de la palabra árabe "Al-Jabr" en el título del libro al-Kitab al-muḫtaṣar fi al-Gabr ḥisāb wa-l-muqābala,, el sentido del Resumen del libro se refiere a la transposición y Cálculo de la Reducción de un libro escrito por el matemático persa islámico, Muhammad ibn Musa Al-Khwārizmī (considerado el "padre del álgebra"), en 820. La palabra Al-Jabr significa "reducción". El matemático helenístico Diophantus ha sido tradicionalmente conocido como el "padre del álgebra", pero en tiempos más recientes, hay mucho debate sobre si al-Khwarizmi, que fundó la disciplina de Al-Jabr, título que se merece su lugar. Los que apoyan a Diophantus apuntan al hecho de que el álgebra que se encuentra en Al-Jabr es algo más elemental que el que se encuentra en el álgebra Aritmética y que Aritmética es sincopada mientras que Al-Jabr es totalmente retórica.

Los números se emplean para representar cantidades conocidas y determinadas. Las letras se emplean para representar toda clase de cantidades, ya sean conocidas o desconocidas. Las cantidades conocidas se expresan por las primeras letras del alfabeto: a, b, c, d, … Las cantidades desconocidas se representan por las últimas letras del alfabeto: u, v, w, x, y, z.

Los

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com