Historia De La Geometría
Enviado por MarioCesar1996 • 6 de Febrero de 2013 • 1.812 Palabras (8 Páginas) • 1.314 Visitas
Origen y evolución de la geometría
La historia del origen de la Geometría es muy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas. Los primeros hombres llegaron a formas geométricas a partir de la observación de la naturaleza.
El sabio griego Eudemo de Rodas, atribuyó a los egipcios el descubrimiento de la geometría, ya que, según él, necesitaban medir constantemente sus tierras debido a que las inundaciones del Nilo borraban continuamente sus fronteras. Recordemos que, precisamente, la palabra geometría significa medida de tierras.
Los egipcios se centraron principalmente en el cálculo de áreas y volúmenes, encontrando, por ejemplo, para el área del círculo un valor aproximado de 3'1605. Sin embargo el desarrollo geométrico adolece de falta de teoremas y demostraciones formales. También encontramos rudimentos de trigonometría y nociones básicas de semejanza de triángulos.
También se tienen nociones geométricas en la civilización mesopotámica, constituyendo los problemas de medida el bloque central en este campo: área del cuadrado, del círculo (con una no muy buena aproximación de (=3), volúmenes de determinados cuerpos, semejanza de figuras, e incluso hay autores que afirman que esta civilización conocía el teorema de Pitágoras aplicado a problemas particulares, aunque no, obviamente, como principio general.
En los matemáticos de la cultura helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de "logística". A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc.
Al mismo tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Junto a la demostración geométrica del teorema de Pitágoras fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números "pitagóricos", esto es, ternas de números que satisfacen la ecuación a2+b2=c2.
En este tiempo transcurrieron la abstracción y sistematización de las informaciones geométricas. En los trabajos geométricos se introdujeron y perfeccionaron los métodos de demostración geométrica. Se consideraron, en particular: el teorema de Pitágoras, los problemas sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo, la cuadratura de una serie de áreas (en particular las acotadas por líneas curvas).
Paralelamente, al ampliarse el número de magnitudes medibles, debido a la aparición de los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita. Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos (sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes.
Podemos considerar la obra de Fibonacci "Practica Geometriae" como el punto de arranque de la geometría renacentista. Está dedicada a resolver determinados problemas geométricos, especialmente medida de áreas de polígonos y volúmenes de cuerpos.
Durante el siglo XVII surgieron casi todas las disciplinas matemáticas, produciéndose en lo que a la geometría se refiere el nacimiento de la geometría analítica. La última parte de la famosa obra de Descartes "Discurso del Método" denominada "Géometrie", detalla en su comienzo, instrucciones geométricas para resolver ecuaciones cuadráticas, centrándose seguidamente en la aplicación del álgebra a ciertos problemas geométricos. Analiza también curvas de distintos órdenes, para terminar en el tercer y último libro que compone la obra, con la construcción de la teoría general de ecuaciones, llegando a la conclusión de que el número de raíces de una ecuación es igual al grado de la misma, aunque no pudo demostrarlo. Prácticamente la totalidad de la Géometrie está dedicada a la interrelación entre el álgebra y la geometría con ayuda del sistema de coordenadas.
Simultáneamente con Descartes, Pierre de Fermat desarrolló un sistema análogo al de aquél. Las ideas de la geometría analítica, esto es, la introducción de coordenadas rectangulares y la aplicación a la geometría de los métodos algebraicos, se concentran en una pequeña obra: "introducción a la teoría de los lugares planos y espaciales". Aquellos lugares geométricos representados por rectas o circunferencias se denominaban planos y los representados por cónicas, especiales. La extensión de la geometría analítica al estudio de los lugares geométricos espaciales, la realizó por la vía del estudio de la intersección de las superficies espaciales por planos. Sin embargo, las coordenadas espaciales también en él están ausentes y
...