ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Redaccion De Analisis


Enviado por   •  24 de Mayo de 2013  •  418 Palabras (2 Páginas)  •  644 Visitas

Página 1 de 2

El concepto de límite es la base fundamental con la que se construye el cálculo infinitesimal (diferencial e integral). Informalmente hablando se dice que el límite es el valor al que tiende una función cuando la variable independiente tiende a un número determinado o al infinito.

Definición de límite

Antes de establecer la definición formal del límite de una función en general vamos a observar qué sucede con una función particular cuando la variable independiente tiende (se aproxima) a un valor determinado.

Ejemplo:

En la tabla adjunta escribimos algunos valores para la variable independiente x, en el entorno de 2, y calculamos los valores correspondientes de la función f (x):

x f (x) Cuando x se aproxima a 2, tanto por la izquierda como por la derecha, tomando valores menores o mayores que 2, f (x) se aproxima, tiende, cada vez más a 3; y cuanto más cerca está x de 2, o lo que es lo mismo, cuando la diferencia en valor absoluto entre x y 2 es más pequeña asimismo la diferencia, en valor absoluto, entre f (x) y 3 se hace cada vez más pequeña. (Estas diferencias se muestran en la tabla inferior derecha). Osea, la función se acerca a un valor constante, 3, cuando la variable independiente se aproxima también a un valor constante.

1.9

1.99

1.999

1.9999

2.0001

2.001

2.01

2.1 2.61

2.9601

2.996001

2.99960001

3.00040001

3.004001

3.0401

3.41

|x - 2| | f (x) - 3|

|1.9-2| = 0.1

|1.99-2| = 0.01

|1.999-2| = 0.001

|1.9999-2| = 0.0001

|2.0001-2| = 0.0001

|2.001-2| = 0.001

|2.01-2| = 0.01

|2.1-2| = 0.1 |2.61-3| = 0.39

|2.9601-3| = 0.0399

|2.996001-3| = 0.003999

|2.99960001-3| = 0.00039999

|3.00040001-3| = 0.00040001

|3.004001-3| = 0.004001

|3.0401-3| = 0.0401

|3.41-3| = 0.41

De lo anterior se deduce intuitivamente que el límite de la función f (x) cuando x tiende a 2, es 3.

Límites unilaterales

Hay casos en que las funciones no están definidas (en los reales) a la izquierda o a la derecha de un número determinado, por lo que el límite de la función cuando x tiende a dicho número, que supone que existe un intervalo abierto que contiene al número, no tiene sentido.

Ejemplo:

Límite unilateral por la derecha:

Sea f una función definida en todos los números del intervalo abierto (a, c). Entonces, el límite de f (x), cuando x se aproxima a a por la derecha es L, y se escribe

Límite unilateral por la izquierda:

Sea f una función definida en todos los números de (d, a). Entonces, el límite de f (x), cuando x se aproxima a a por la izquierda es L, y se escribe

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com